STATISTICS, BA

REQUIREMENTS

UNIVERSITY GENERAL EDUCATION REQUIREMENTS

All undergraduate students at the University of Wisconsin–Madison are required to fulfill a minimum set of common university general education requirements to ensure that every graduate acquires the essential core of an undergraduate education. This core establishes a foundation for living a productive life, being a citizen of the world, appreciating aesthetic values, and engaging in lifelong learning in a continually changing world. Various schools and colleges will have requirements in addition to the requirements listed below. Consult your advisor for assistance, as needed. For additional information, see the university Undergraduate General Education Requirements (http://guide.wisc.edu/undergraduate/ #requirementsforundergraduatestudytext) section of the *Guide*.

General Education

Language

- Breadth–Humanities/Literature/Arts: 6 credits
- Breadth–Natural Science: 4 to 6 credits, consisting of one 4- or 5-credit course with a laboratory component; or two courses providing a total of 6 credits
 - Breadth–Social Studies: 3 credits
 Communication Part A & Part B *
 - Ethnic Studies *
 - Quantitative Reasoning Part A & Part B *

* The mortarboard symbol appears before the title of any course that fulfills one of the Communication Part A or Part B, Ethnic Studies, or Quantitative Reasoning Part A or Part B requirements.

COLLEGE OF LETTERS & SCIENCE DEGREE REQUIREMENTS: BACHELOR OF ARTS (BA)

Students pursuing a bachelor of arts degree in the College of Letters & Science must complete all of the requirements below. The College of Letters & Science allows this major to be paired with either a bachelor of arts or a bachelor of science curriculum.

BACHELOR OF ARTS DEGREE REQUIREMENTS

- Mathematics Complete the University General Education Requirements for Quantitative Reasoning A (QR-A) and Quantitative Reasoning B (QR-B) coursework.
 - Complete the fourth unit of a language other than English; OR
 - Complete the third unit of a language and the second unit of an additional language other than English.

- L&S Breadth 12 credits of Humanities, which must include 6 credits of literature; and
 - 12 credits of Social Science; and
 - 12 credits of Natural Science, which must include one 3+ credit Biological Science course and one 3+ credit Physical Science course.

Liberal Arts and Science Coursework	Complete at least 108 credits.
Depth of Intermediate/ Advanced work	Complete at least 60 credits at the intermediate or advanced level.
Major	Declare and complete at least one major.
Total Credits	Complete at least 120 credits.
UW-Madison	 30 credits in residence, overall; and
Experience	• 30 credits in residence after the 86th credit.
Quality of	 2.000 in all coursework at UW–Madison
Work	 2.000 in Intermediate/Advanced level coursework at UW–Madison

NON-L&S STUDENTS PURSUING AN L&S MAJOR

Non-L&S students who have permission from their school/college to pursue an additional major within L&S only need to fulfill the major requirements. They do not need to complete the L&S Degree Requirements above.

REQUIREMENTS FOR THE MAJOR MATHEMATICS

Code	Title	Credits			
Calculus 1 (Complete one): 5-10					
MATH 221	Calculus and Analytic Geometry 1 ¹				
MATH 171 & MATH 217	Calculus with Algebra and Trigonometry I and Calculus with Algebra and Trigonometry II ¹				
Calculus 2					
MATH 222	Calculus and Analytic Geometry 2 ¹	4			
Calculus 3 (Complete one):					
MATH 234	CalculusFunctions of Several Variables ¹				
MATH 376	Topics in Multi-Variable Calculus and Differential Equations				
Linear Algebra (Co	nplete one):	3-5			
MATH 340	Elementary Matrix and Linear Algebra				
MATH 320	Linear Algebra and Differential Equations				
MATH 341	Linear Algebra				
MATH 375	Topics in Multi-Variable Calculus and Linear Algebra				

Total Credits

COMPUTER PROGRAMMING

Code	Title	Credits
Complete one of:		3-4
COMP SCI 200	Programming I	
COMP SCI 220	Data Science Programming I	
COMP SCI 300	Programming II	
COMP SCI 320	Data Science Programming II	
COMP SCI 400	Programming III	
COMP SCI 412	Introduction to Numerical Methods	
Total Credits		3-4
STATISTICS		
Code	Title	Credits
Introductory Statis	tics & Basic Statistical Language:	4-5
STAT 240	Data Science Modeling I	
or STAT 301	Introduction to Statistical Methods	
or STAT 324	Introductory Applied Statistics for Enginee	rs
or STAT 371	Introductory Applied Statistics for the Life Sciences	
STAT 303	R for Statistics I	
Statistical Models:		6-7
STAT 333	Applied Regression Analysis	
or STAT 340	Data Science Modeling II	
STAT/M E 424	Statistical Experimental Design	
Probability (Comple	ete one):	3
STAT/MATH 309	Introduction to Probability and Mathematical Statistics I	
STAT 311	Introduction to Theory and Methods of Mathematical Statistics I	
STAT/MATH 431	Introduction to the Theory of Probability	
MATH 531	Probability Theory	
Inference:		3
STAT/MATH 310	Introduction to Probability and Mathematical Statistics II	
Electives:		15
Students will comp with a maximum of	lete a total of 15 credits of electives 6 credits from the domain electives	
Core Electives		9-15
STAT 304	R for Statistics II	
STAT 305	R for Statistics III	
STAT 349	Introduction to Time Series	
STAT 351	Introductory Nonparametric Statistics	
STAT 360	Topics in Statistics Study Abroad	
STAT 405	Data Science Computing Project	
STAT 411	An Introduction to Sample Survey Theory and Methods	
STAT 421	Applied Categorical Data Analysis	
STAT 433	Data Science with R	
STAT 443	Classification and Regression Trees	
STAT 436	Statistical Data Visualization	

	STAT 451	Introduction to Machine Learning and Statistical Pattern Classification	
	STAT 453	Introduction to Deep Learning and Generative Models	
	STAT 456	Applied Multivariate Analysis	
	STAT 461	Financial Statistics	
	STAT/ COMP SCI 471	Introduction to Computational Statistics	
	STAT 479	Special Topics in Statistics ²	
	STAT 575	Statistical Methods for Spatial Data	
	STAT/I SY E/ MATH/OTM 632	Introduction to Stochastic Processes	
	STAT/BMI 641	Statistical Methods for Clinical Trials	
	STAT/BMI 642	Statistical Methods for Epidemiology	
	STAT 679	Special Topics in Statistics ²	
Do	omain Electives		0-6
	ACT SCI 653	Advanced Short-Term Actuarial Modeling	
	ACT SCI 654	Regression and Time Series for Actuaries	
	COMP SCI/E C E/ M E 532	Matrix Methods in Machine Learning	
	COMP SCI/ E C E 561	Probability and Information Theory in Machine Learning	
	ECON 570	Fundamentals of Data Analytics for Economists	
	GEN BUS 656	Machine Learning for Business Analytics	
	GEOG 560	Advanced Quantitative Methods	
	I SY E 521	Machine Learning in Action for Industrial Engineers	
	MATH 635	An Introduction to Brownian Motion and Stochastic Calculus	
	SOC 362	Statistics for Sociologists III	
	SOC 375	Introduction to Mathematical Sociology	
	STAT/COMP SCI/ MATH 475	Introduction to Combinatorics	
	STAT/COMP SCI/ I SY E/MATH 525	Linear Optimization	

Total Credits

40-54

RESIDENCE & QUALITY OF WORK

- 2.000 GPA in all STAT and major courses
- + 2.000 GPA on 15 Upper-Level Major credits, taken In Residence $^{\rm 3}$
- 15 credits in STAT courses, taken on the UW-Madison campus

HONORS IN THE MAJOR

Students may declare Honors in the Statistics Major in consultation with the Statistics major advisor(s). To be admitted to the Honors Program in Statistics, students must have declared Statistics, must have a 3.3 University GPA, and must have completed and an Introductory Statistics Course (STAT 240, STAT 301, STAT 324 or STAT 371), STAT/ MATH 309, and STAT 333 or STAT 340 (or other courses with the approval of the advisor) with a GPA of 3.500 or higher in these three classes.

HONORS IN THE STATISTICS MAJOR: REQUIREMENTS

To earn Honors in the Major in Statistics, students must satisfy both the requirements for the major (above) and the following additional requirements:

- Earn a 3.300 University GPA
- Earn a 3.500 GPA for all STAT courses
- Complete two STAT major courses (excluding 699) for a total of 6 Honors credits (http://honors.ls.wisc.edu/SiteContent.aspx? prev=1&id=370) or complete 18 total credits of electives in the major where 12-18 credits come from the core elective category and 0-6 credits from the domain elective category
- STAT 681-STAT 682, for a total of 6 credits, under the supervision of a member of the Statistics faculty or 6 credits of pre-approved research credits outside of the Statistics Department.

FOOTNOTES

- ¹ A grade of C or higher is required for this course to meet the requirement.
- ² STAT 479 and STAT 679 can be repeated for elective credit when enrolled for different topics.
- ³ Courses that are considered Upper-Level in the major are STAT 303, STAT 304, STAT 305, STAT/MATH 309,MATH 531 STAT/MATH 310, STAT 311, STAT 312, STAT 333, STAT 340, STAT 349, STAT 351, STAT 360, STAT 405, STAT 411, STAT 421, STAT/M E 424, STAT/ MATH 431,STAT 433, STAT 436, STAT 443, STAT 451, STAT 453, STAT 456, STAT 461, STAT/COMP SCI 471, STAT 479, STAT/I SY E/ MATH/OTM 632, STAT/B M I 641, STAT/B M I 642, STAT 699, ACT SCI 653, ACT SCI 654, COMP SCI/E C E/M E 532, COMP SCI/ E C E 561, ECON 570, GEN BUS 656, GEOG 560, I SY E 521, MATH 635, SOC 362, SOC 375, STAT/COMP SCI/MATH 475, STAT/ COMP SCI/I SY E/MATH 525.

UNIVERSITY DEGREE REQUIREMENTS

- Total Degree To receive a bachelor's degree from UW–Madison, students must earn a minimum of 120 degree credits. The requirements for some programs may exceed 120 degree credits. Students should consult with their college or department advisor for information on specific credit requirements.
- Residency Degree candidates are required to earn a minimum of 30 credits in residence at UW–Madison. "In residence" means on the UW–Madison campus with an undergraduate degree classification. "In residence" credit also includes UW–Madison courses offered in distance or online formats and credits earned in UW–Madison Study Abroad/Study Away programs.

Quality of Work Undergraduate students must maintain the minimum grade point average specified by the school, college, or academic program to remain in good academic standing. Students whose academic performance drops below these minimum thresholds will be placed on academic probation.