MATHEMATICS: MATHEMATICS FOR STATISTICAL ANALYSIS AND RISK ASSESSMENT

The mathematics named option programs allow students to develop a deep understanding of how the subject relates to other areas of human inquiry. The requirements for these programs feature mathematics courses with topics inspired by and commonly applied to problems in these associated fields. Though often paired with a second major in a related area, these programs function well alone and are suited to any mathematics student with a variety of interests. Students interested in a named option program are recommended to meet with an advisor to navigate the various plans and courses available to them. Advising information can be found on the BA or BS pages (http:// guide.wisc.edu/ undergraduate/letters-science/mathematics/mathematics-ba/ \#advisingandcareerstext).

The named options do not support honors in the major.

REQUIREMENTS

REQUIREMENTS

The Mathematics for Statistical Analysis and Risk Assessment program requires 10 distinct courses for at least 30 credits as described below. Note that while some courses may be used to fulfill more than one requirement it is still considered only a single course and may only contribute once to the total course count. Finally, at most one course from each of the following groupings may be used to fulfill the minimum course and credit requirement (i.e.: minimum of ten courses and at least 30 credits): Intro Linear Algebra (MATH 320, MATH 340, MATH 341, MATH 375), Intro Differential Equations (MATH 319, MATH 320 or MATH 376), and Intro Probability (MATH/STAT 309 or MATH/STAT 431).

Code
 Title
 Credits

Core Math Requirement (minimum of six distinct MATH courses for at least 18 credits) ${ }^{1}$

Linear Algebra		-5
MATH 341 or MATH 320 or MATH 340 or MATH 375	Linear Algebra Linear Algebra and Differential Equations Elementary Matrix and Linear Algebra Topics in Multi-Variable Calculus and Linear Algebra	
Probability (Complete at least one)		3
MATH/STAT 431 or MATH/ STAT 309	Introduction to the Theory of Probability Introduction to Probability and Mathematical Statistics I	
MATH 531	Probability Theory	
Statistics ${ }^{1}$		3

$\begin{array}{ll}\text { MATH/STAT } 310 & \text { Introduction to Probability and } \\ & \text { Mathematical Statistics II (Statistics) }\end{array}$
Intermediate Mathematics Requirement (complete at least

one)

MATH 321	Applied Mathematical Analysis
\& MATH 322	and Applied Mathematical Analysis
MATH 341	Linear Algebra
MATH 375	Topics in Multi-Variable Calculus and Linear Algebra
MATH 421	The Theory of Single Variable Calculus

Advanced Mathematics Requirement (select one)	3	
MATH/ Numerical Analysis COMP SCl 514		
MATH 521	Analysis I	
MATH 531	Probability Theory	
MATH 535	Mathematical Methods in Data MATH 540	Linear Algebra II
Electives to reach required six courses for at least 18 credits	3-6	

in MATH
At least one elective must come from: ${ }^{2}$
MATH/ \quad Numerical Linear Algebra
COMP SCI 513

MATH/ Numerical Analysis
COMP SCI 514
MATH 519 Ordinary Differential Equations
MATH 521 Analysis I
MATH 522 Analysis II
MATH/ Linear Optimization
COMP SCI/I SY E/
STAT 525
MATH $531 \quad$ Probability Theory
MATH $535 \quad$ Mathematical Methods in Data
Science

MATH 540	Linear Algebra II
MATH 541	Modern Algebra
MATH 542	Modern Algebra
MATH 605	Stochastic Methods for Biology
MATH 616	Data-Driven Dynamical Systems, Stochastic Modeling and Prediction

MATH 619 Analysis of Partial Differential Equations
MATH 627 Introduction to Fourier Analysis
MATH 629 Introduction to Measure and Integration
MATH/I SY E/ Introduction to Stochastic
OTM/STAT 632 Processes
MATH 635 An Introduction to Brownian Motion and Stochastic Calculus
Remaining courses/credits may be selected from:
MATH $319 \quad$ Techniques in Ordinary Differential Equations
MATH 321 Applied Mathematical Analysis
MATH 322 Applied Mathematical Analysis

MATH 376	Topics in Multi-Variable Calculus and Differential Equations
MATH 415	Applied Dynamical Systems, Chaos and Modeling
MATH 421	The Theory of Single Variable Calculus
MATH/	Introduction to Combinatorial COMP SCI/ ISY E 425
Optimization	

Statistics/Risk Requirement (Four Courses distinct

 from the above for at least 12 credits) ${ }^{3}$Select a distinct introduction course or sequence: 3-6
Actuarial Sciences:
ACT SCI 303 Theory of Interest
Statistics:
STAT $333 \quad$ Applied Regression Analysis
\& STAT/M E 424 and Statistical Experimental Design
Data Science:
STAT 340 Data Science Modeling II
\& STAT/M E 424 and Statistical Experimental Design
Select remaining courses/credits from: ${ }^{4}$
6-14

ACT SCI 650	Fundamentals of Long-Term Actuarial Modeling
ACT SCI 651	Advanced Long-Term Actuarial Modeling
ACT SCI 652	Fundamentals of Short-Term Actuarial Modeling
ACT SCI 653	Advanced Short-Term Actuarial Modeling
ACT SCI 654	Regression and Time Series for Actuaries
ACT SCI 655	Health Analytics GEN BUS 656
Machine Learning for Business Analytics	
STAT 349	Introduction to Time Series
STAT 351	Introductory Nonparametric Statistics
STAT 411	An Introduction to Sample Survey Theory and Methods
STAT 421	Applied Categorical Data Analysis
STAT 451	Introduction to Machine Learning and Statistical Pattern Classification
STAT 453	Introduction to Deep Learning and Generative Models
STAT 456	Applied Multivariate Analysis
STAT 461	Financial Statistics

STAT/	Introduction to Computational
COMP SCI 471	Statistics
STAT/COMP SCI/	Introduction to Combinatorics
MATH 475	
STAT/COMP SCI/	Linear Optimization
ISY E/MATH 525	
STAT 575	Statistical Methods for Spatial Data
STAT/I SY E/	Introduction to Stochastic
MATH/OTM 632	Processes
STAT/B M I 641	Statistical Methods for Clinical Trials
STAT/B M I 642	Statistical Methods for
	Epidemiology
ME536	Data Driven Engineering Design

Total Credits

RESIDENCE AND QUALITY OF WORK

- 2.000 GPA on all MATH courses and courses eligible for the major. ${ }^{5}$
- 2.000 GPA on at least 15 credits of upper level credit in the major. ${ }^{6}$
- 15 credits in MATH in the major taken on the UW-Madison campus. ${ }^{7}$

FOOTNOTES

${ }^{1}$ Students taking STAT 312 to satisfy the Statistics requirement will not be able to use this course towards the six courses/ 18 credits of MATH courses.
2 This course must be distinct from the advanced mathematics requirement.
${ }^{3}$ The courses which follow may have prerequisites outside of this program.
${ }^{4}$ Any MATH course from the elective list above may be used in lieu of any of the following courses.
5 This includes any course with a MATH prefix (or cross-listed with MATH) regardless of its appearance in the tables above and any non-MATH course explicitly listed in the tables above.
${ }^{6}$ This includes any MATH course (including those crosslisted with MATH) which are numbered 307 and above, regardless of its appearance in the tables above, as well as only those non-MATH course which appear in the tables above and have the advanced LAS attribute.
7 This includes any MATH course (and those crosslisted with MATH) numbered 307 and above.

FOUR-YEAR PLAN

SAMPLE FOUR-YEAR PLAN

This Sample Four-Year Plan is a tool to assist students and their advisor(s). Students should use it-along with their DARS report, the Degree Planner, and Course Search \& Enroll tools-to make their own four-year plan based on their placement scores, credit for transferred courses and approved examinations, and individual interests. As students become involved in athletics, honors, research, student organizations, study abroad, volunteer experiences, and/or work, they might adjust the order of their courses to accommodate these experiences. Students will likely revise their own fouryear plan several times during college.

In general, your four year plan in mathematics should be organized along the following sequence:

1. Calculus
2. Linear Algebra
3. Required Intermediate level course
4. Additional intermediate level courses as needed
5. Required advanced level course
6. Additional advanced level courses

Freshman

Fall	Credits Spring	Credits
MATH 221	5 MATH 222	4
Literature Breadth	3 Literature Breadth	3
Communication A	3 Ethnic Studies	3
Foreign Language if required	4 Foreign Language (if required)	4
	15	14

Sophomore

Fall	Credits Spring	Credits
MATH 234	4 MATH Required Linear	3
Humanities Breadth	Algebra	
	3 MATH required	3
Communication B	Probability	3
Physical Science Breadth	3 Humanities Breadth	3
Elective	3 Physical Science Breadth	3
	3 Elective	3

Junior

Fall	Credits Spring	Credits
MATH required Statistics	3 Required Intermediate MATH	3
Data/Risk course	3 Data/Risk course	3
Social Sciences Breadth	3 Social Science Breadth	3
Biological Sciences Breadth	3 Biological Sciences Breadth	3
Elective	3 Elective	3
	15	15
Senior		
Fall	Credits Spring	Credits
Required Advanced MATH	3 Advanced MATH Elective	3
Data/Risk course	3 Data/Risk course	3
Social Science Breadth	3 Social Science Breadth	3
Elective	3 Elective	3
Elective	3 Elective	3
	15	15

Total Credits 120

1 Students should declare their major upon the successful completion of this course

