MATHEMATICS: MATHEMATICS FOR PROGRAMMING AND COMPUTING

The mathematics named option programs allow students to develop a deep understanding of how the subject relates to other areas of human inquiry. The requirements for these programs feature mathematics courses with topics inspired by and commonly applied to problems in these associated fields. Though often paired with a second major in a related area, these programs function well alone and are suited to any mathematics student with a variety of interests. Students interested in a named option program are recommended to meet with an advisor to navigate the various plans and courses available to them. Advising information can be found on the BA or BS pages (http://guide.wisc.edu/ undergraduate/letters-science/mathematics/mathematics-ba/ \#advisingandcareerstext).

The named options do not support honors in the major.

REQUIREMENTS

REQUIREMENTS

The Mathematics for Programming and Computing program requires 10 distinct courses for at least 30 credits as described below. While a single courses may be used to fulfill more than one requirement, it will only contribute once to the total course count. Finally, at most one course from each of the following groupings may be used to fulfill the minimum course and credit requirement (i.e.: minimum of ten courses and at least 30 credits): Intro Linear Algebra (MATH 320, MATH 340, MATH 341, MATH 375), Intro Differential Equations (MATH 319, MATH 320 or MATH 376), and Intro Probability (MATH/STAT 309 or MATH/STAT 431).

Code	Title	Credits
Core Math Requirement (minimum of six distinct MATH courses for at least 18 credits)		
Linear Algebra		3-5
MATH 341	Linear Algebra	
or MATH 320	Linear Algebra and Differential Equations	
or MATH 340	Elementary Matrix and Linear Algebra	
or MATH 375	Topics in Multi-Variable Calculus and Linear Algebra	
Intermediate Mathematics Requirement (complete at least one)		0-6
MATH 321	Applied Mathematical Analysis	
\& MATH 322	and Applied Mathematical Analysis	
MATH 341	Linear Algebra	
MATH 375	Topics in Multi-Variable Calculus and Linear Algebra	
MATH 421	The Theory of Single Variable Calculus	
MATH 467	Introduction to Number Theory	

Advanced Mathematics Requirement (complete one)

MATH/	Numerical Analysis
COMP SCI 514	
MATH 521	Analysis I
MATH 531	Probability Theory
MATH 535	Mathematical Methods in Data
MATH 540	Science
MATH 541	Modern Algebra II
MATH/	Mathematical Logic
PHILOS 571	

MATH Elective to reach required minimum of six courses for 6-12 at least 18 credits
At least one course must be from: ${ }^{1}$

MATH/	Numerical Linear Algebra
COMP SCI 513	
MATH/	Numerical Analysis
COMP SCI 514	
MATH 521	Analysis I
MATH 522	Analysis II
MATH/	Linear Optimization
COMP SCI/I SY E/	
STAT 525	

MATH $531 \quad$ Probability Theory

MATH 535	Mathematical Methods in Data Science
MATH 540	Linear Algebra II
MATH 541	Modern Algebra
MATH 542	Modern Algebra
MATH 567	Modern Number Theory
MATH 570	Fundamentals of Set Theory
MATH/	Mathematical Logic
PHILOS 571	Stochastic Methods for Biology
MATH 605	Data-Driven Dynamical Systems,
MATH 616	Stochastic Modeling and Prediction
MATH 619	Analysis of Partial Differential
MATH 627	Equations
MATH 629	Introduction to Fourier Analysis
MATH/I SY E/	Integration
OTM/STAT 632	Processes Measure and

MATH 635 An Introduction to Brownian Motion and Stochastic Calculus
Select remaining courses from:
MATH/STAT 310 Introduction to Probability and Mathematical Statistics II
MATH 319 Techniques in Ordinary Differential Equations
or MATH 376 Topics in Multi-Variable Calculus and Differential Equations
MATH 321 Applied Mathematical Analysis
MATH 322 Applied Mathematical Analysis
MATH 415 Applied Dynamical Systems, Chaos and Modeling

MATH 421	The Theory of Single Variable Calculus
MATH/ COMP SCI/ ISYE 425	Introduction to Combinatorial Optimization
MATH/STAT 431 or MATH/ STAT 309	Introduction to the Theory of Probability Introduction to Probability and Mathematical Statistics I
$\begin{aligned} & \text { MATH/ } \\ & \text { COMP SCI/ } \\ & \text { ECE } 435 \end{aligned}$	Introduction to Cryptography
MATH 443	Applied Linear Algebra
MATH 444	Graphs and Networks in Data Science
MATH 467	Introduction to Number Theory
MATH/ COMP SCI/ STAT 475	Introduction to Combinatorics
Programming and (Four Courses disti credits) ${ }^{2}$	Computations Requirement nct from the above for at least 12
COMP SCl 300	Programming II
COMP SCI 400	Programming III
Elective ${ }^{3}$	
COMP SCI 412	Introduction to Numerical Methods
COMP SCI/ISY E/ MATH 425	Introduction to Combinatorial Optimization
COMP SCI/E C E/ MATH 435	Introduction to Cryptography
$\begin{aligned} & \text { COMP SCI/ } \\ & \text { STAT } 471 \end{aligned}$	Introduction to Computational Statistics
COMP SCI/ MATH/STAT 475	Introduction to Combinatorics
COMP SCI/ MATH 513	Numerical Linear Algebra
COMP SCI/ MATH 514	Numerical Analysis
COMP SCI 520	Introduction to Theory of Computing
$\begin{aligned} & \text { COMP SCI/E C E/ } \\ & \text { I SY E } 524 \end{aligned}$	Introduction to Optimization
COMP SCI/ISY E/ MATH/STAT 525	Linear Optimization
$\begin{aligned} & \text { COMP SCI/ } \\ & \text { I SYE } 526 \end{aligned}$	Advanced Linear Programming
$\begin{aligned} & \text { COMP SCI/E C E/ } \\ & \text { ME } 532 \end{aligned}$	Matrix Methods in Machine Learning
$\begin{aligned} & \text { COMP SCI/ } \\ & \text { ECE } 533 \end{aligned}$	Image Processing
COMP SCI 534	Computational Photography
COMP SCI 538	Introduction to the Theory and Design of Programming Languages
COMP SCI/E C E/ ME 539	Introduction to Artificial Neural Networks
COMP SCI 540	Introduction to Artificial Intelligence

COMP SCI/ISY ME 558	Introduction to Computational Geometry
COMP SCI 559	Computer Graphics
$\begin{aligned} & \text { COMP SCI/ } \\ & \text { B M I } 567 \end{aligned}$	Medical Image Analysis
$\begin{aligned} & \text { COMP SCI/ } \\ & \text { B MI } 576 \end{aligned}$	Introduction to Bioinformatics
COMP SCI 577	Introduction to Algorithms
$\begin{aligned} & \text { COMP SCI/ } \\ & \text { ISYE } 635 \end{aligned}$	Tools and Environments for Optimization
COMP SCI 642	Introduction to Information Security

Total Credits

RESIDENCE AND QUALITY OF WORK

- 2.000 GPA on all MATH courses and courses eligible for the major. ${ }^{4}$
- 2.000 GPA on at least 15 credits of upper level credit in the major. ${ }^{5}$
- 15 credits in MATH in the major taken on the UW-Madison campus. ${ }^{6}$

FOOTNOTES

1 This course must be distinct from the advanced mathematics requirement.
${ }^{2}$ Courses below may have prerequisites outside of the requirements for this named option.
${ }^{3}$ Any MATH course from the elective list above may be used in lieu of any of the following courses.
4 This includes any course with a MATH prefix (including those crosslisted with MATH) regardless of major program as well as only those non-MATH course explicitly listed in the tables above.
5 This includes any course with a MATH prefix (including those crosslisted with MATH) numbered 307 and above as well as only those nonMATH courses which appear in the tables above and carry the advanced LAS designation.
6 This includes only those courses with a MATH prefix (or crosslisted with MATH).

FOUR-YEAR PLAN

SAMPLE FOUR-YEAR PLAN

This Sample Four-Year Plan is a tool to assist students and their advisor(s). Students should use it-along with their DARS report, the Degree Planner, and Course Search \& Enroll tools-to make their own four-year plan based on their placement scores, credit for transferred courses and approved examinations, and individual interests. As students become involved in athletics, honors, research, student organizations, study abroad, volunteer experiences, and/or work, they might adjust the order of their courses to accommodate these experiences. Students will likely revise their own fouryear plan several times during college.

In general, your four year plan in mathematics should be organized along the following sequence:

1. Calculus
2. Linear Algebra
3. Required Intermediate level course
4. Additional intermediate level courses as needed
5. Required advanced level course
6. Additional advanced level courses

Freshman

Fall	Credits Spring	Credits
MATH 221	5 MATH 222	4
Literature Breadth	3 Literature Breadth	3
Communication A	3 Ethnic Studies	3
Foreign Language (if required)	4 Foreign Language (if required)	4
	$\mathbf{1 5}$	$\mathbf{1 4}$

Sophomore

Fall	Credits Spring	Credits
MATH 234	4 MATH Required Linear	3
Humanities Breadth	Algebra	
3 Required Intermediate	3	
Communication B	MATH	3
Physical Science Breadth	3 Humanities Breadth	3
Elective	3 Physical Science Breadth	3
	3 Elective	3

Junior		
Fall	Credits Spring	Credits
Intermediate MATH	3 Intermediate MATH	3
COMP SCI 300	3 COMP SCI 400	3
Social Sciences Breadth	3 L\&S Breadth - Social Science	3
Biological Sciences Breadth	3 Biological Sciences Breadth	3
Elective	3 Elective	3
	15	15
Senior		
Fall	Credits Spring	Credits
Required Advanced MATH	3 Advanced MATH	3
Elective Programming/ Computations Course	3 Elective Programming/ Computations Course	3
Social Science Breadth	3 Social Science Breadth	3
Elective	3 Elective	3
Elective	3 Elective	3
	15	15

Total Credits 120

1 Students should declare the major upon the successful completion of this course

