APPLIED MATHEMATICS, ENGINEERING, AND PHYSICS, BS AMEP

This four-year degree program in the interdisciplinary physical sciences offers a strong foundation in related areas of engineering sciences, mathematics, and physics for professional work in the field of industrial research and technology. It also provides a foundation for graduate degree work in applied mathematics, engineering sciences, and physics.

The Applied Mathematics, Engineering, and Physics (AMEP) program is an excellent choice for the student with broad interests in mathematics, physics, and engineering. AMEP emphasizes an integrated mathematics and physics curriculum and strives to achieve an optimum balance of breadth and depth in the physical sciences within the confines of a fouryear degree.

HOW TO GET IN

HOW TO GET IN DECLARATION REQUIREMENTS

Because admission into AMEP is internal to UW–Madison, a student must be admitted to UW–Madison or already be a UW–Madison student to join AMEP.

The general expectation for admission to the AMEP program is completion of the introductory calculus and physics sequences with appropriate success. Specifically a student must have

- Completed MATH 221, MATH 222, and MATH 234 with at least a 2.75 GPA.
 - MATH 375 and MATH 376 (together) may be substituted for MATH 234.
- Completed PHYSICS 247, PHYSICS 248, PHYSICS 249 with at least a 2.75 GPA.
 - For alternate Introductory Physics courses, see the Requirements (https://guide.wisc.edu/undergraduate/letters-science/ mathematics/applied-mathematics-engineering-physics-bsamep/#requirementstext) tab.

Students who do not meet the above qualifications (transfer students, freshmen with advanced standings, etc.) may be admitted to the program on a probationary basis. However, such students who do not eventually meet the above admission requirement or maintain a 2.000 GPA in quality of work program requirements in their first term at UW-Madison may be reassigned to a standard BA or BS degree.

Finally, students who have accrued 86 or more credits will be admitted to the AMEP program only if:

 the student has above a 2.000 GPA in both the general and upperlevel quality of work requirements (see Requirements (https:// guide.wisc.edu/undergraduate/letters-science/mathematics/appliedmathematics-engineering-physics-bs-amep/#requirementstext)) and • the student has fewer than 60 outstanding credits needed to complete the BS-AMEP degree.

DECLARING THE APPLIED MATHEMATICS, ENGINEERING, AND PHYSICS UNDERGRADUATE DEGREE PROGRAM

Any student who is interested in the AMEP program should meet with a program advisor as soon as possible. The advisor will help the student negotiate pre-AMEP status and eventually assist in declaration for the program. In general, this should be the AMEP academic advisor or an AMEP math faculty advisor.

Advising information can be found in the Advising and Careers (https:// guide.wisc.edu/undergraduate/letters-science/mathematics/appliedmathematics-engineering-physics-bs-amep/#advisingandcareerstext) tab.

Students pursuing the BS-AMEP degree are not eligible to declare the following programs:

- Mathematics for Physical and Biological Sciences named option of the Mathematics major
- Mathematics certificate
- Physics certificate

REQUIREMENTS

UNIVERSITY GENERAL EDUCATION REQUIREMENTS

All undergraduate students at the University of Wisconsin–Madison are required to fulfill a minimum set of common university general education requirements to ensure that every graduate acquires the essential core of an undergraduate education. This core establishes a foundation for living a productive life, being a citizen of the world, appreciating aesthetic values, and engaging in lifelong learning in a continually changing world. Various schools and colleges will have requirements in addition to the requirements listed below. Consult your advisor for assistance, as needed. For additional information, see the university Undergraduate General Education Requirements (http://guide.wisc.edu/undergraduate/ #requirementsforundergraduatestudytext) section of the *Guide*.

- General Education
- Breadth–Humanities/Literature/Arts: 6 credits
- Breadth–Natural Science: 4 to 6 credits, consisting of one 4- or 5-credit course with a laboratory component; or two courses providing a total of 6 credits
 - Breadth–Social Studies: 3 credits
 - Communication Part A & Part B *
 - Ethnic Studies *
 - Quantitative Reasoning Part A & Part B *

* The mortarboard symbol appears before the title of any course that fulfills one of the Communication Part A or Part B, Ethnic Studies, or Quantitative Reasoning Part A or Part B requirements.

COLLEGE OF LETTERS & SCIENCE DEGREE REQUIREMENTS: BACHELOR OF SCIENCE-APPLIED MATHEMATICS, ENGINEERING, **AND PHYSICS (BS-AMEP)**

Students pursuing a Bachelor of Science–Applied Mathematics, Engineering, and Physics degree in the College of Letters & Science must complete all of the requirements below. The BS-AMEP is a special degree program; it is not considered a major. The BS–AMEP degree is not available to students who intend to earn a degree outside the College of Letters & Science.

BACHELOR OF SCIENCE - AMEP DEGREE REQUIREMENTS

Mathematics	Complete the University General Education Requirements for Quantitative Reasoning A (QR-A) and Quantitative Reasoning B (QR-B) coursework.
Language	Complete the second unit of a language other than English.
Liberal Arts and Science Requirement	Complete a minimum of 20 credits in Liberal Arts and Science (LAS) coursework outside the physical and mathematical sciences, including: • at least of 12 credits of Humanities and/or Social Science, including at least 6 credits in Humanities and at least 3 credits of Social Science • a maximum of 8 credits of Biological Science • additional eligible coursework to reach 20 total credits.
	Courses that carry the Physical Science breadth designation, or are listed (or cross-listed) in the MATH or COMP SCI subjects, are not eligible.
Total Credits	Complete at least 125 credits.
UW–Madison Experience	Complete both: • 30 credits in residence, overall, and • 30 credits in residence after the 90th credit.
Quality of	• 2.000 in all coursework at UW-Madison

Work

PROGRAM OVERVIEW

A total of at least 125 credits with a minimum GPA of 2.000 is required for this degree plan. Of these credits, at least 83 must be devoted to the Applied Math, Engineering and Physics (AMEP) program requirements; 20 must be devoted to University General Education requirements; and the balance should be taken to meet the Bachelor of Science - AMEP Degree Requirements and Electives.

Code	Title	Credits
University Gen	eral Education Requirements	20
Bachelor of Sci	ence – AMEP Degree Requirements	22
AMEP Program	Requirements	83
Total Credits		125

AMEP PROGRAM REQUIREMENTS FOUNDATIONAL MATHEMATICS

FOUNDATIO	NAL MAI HEMANCS	
Code	Title	Credits
Single Variable Ca	alculus	
Complete both.		
MATH 221	Calculus and Analytic Geometry 1	5
MATH 222	Calculus and Analytic Geometry 2	4
Multivariable Cal	culus	
Complete one of th	e following:	4-10
MATH 234	CalculusFunctions of Several Variables	
MATH 375 & MATH 376	Topics in Multi-Variable Calculus and Linear Algebra and Topics in Multi-Variable Calculus and Differential Equations ¹	
Total Credits		13-19

FOUNDATIONAL PHYSICS

Code	Title	Credits
First Introductory (Course	
Complete one of the		3-5
PHYSICS 247	A Modern Introduction to Physics	
PHYSICS 207	General Physics	
PHYSICS 201	General Physics	
E M A 202	Dynamics	
M E 240	Dynamics	
Second Introductor	y Course	
Complete one of the	following:	5
PHYSICS 248	A Modern Introduction to Physics	
PHYSICS 208	General Physics	
PHYSICS 202	General Physics	
Third Introductory	Course	
Complete one of the	following:	3-4
PHYSICS 249	A Modern Introduction to Physics	
PHYSICS 241	Introduction to Modern Physics	
PHYSICS 205	Modern Physics for Engineers	
PHYSICS/	Introduction to Solid State	
ECE 235	Electronics	
Total Credits		11-14
CHEMISTRY		
Code	Title	Credits
Complete one of the	following:	5-9
CHEM 109	Advanced General Chemistry	
CHEM 103	General Chemistry I	
& CHEM 104	and General Chemistry II	
CHEM 115	Chemical Principles I	
Total Credits		5-9

MATHEMATICS

Complete at least six courses for 18 credits.

Code Core: Linear Algeb		Credits
Complete one of the		3-5
MATH 320	Linear Algebra and Differential Equations ²	
MATH 340	Elementary Matrix and Linear Algebra	
MATH 341	Linear Algebra	
MATH 375	Topics in Multi-Variable Calculus and Linear Algebra	
Core: Differential E	Equations	
Complete one of the	following:	0-5
MATH 320	Linear Algebra and Differential Equations ²	
MATH 319	Techniques in Ordinary Differential Equations	
MATH 376	Topics in Multi-Variable Calculus and Differential Equations	
Core: Applied Anal	ysis	
Complete both.		
MATH 321	Applied Mathematical Analysis	3
MATH 322	Applied Mathematical Analysis	3
Math Electives		
Complete at least the	ree courses for 9 credits. Select from:	9
MATH 415	Applied Dynamical Systems, Chaos and Modeling	
MATH 421	The Theory of Single Variable Calculus	
MATH/STAT 431	Introduction to the Theory of Probability	
or MATH/ STAT 309	Introduction to Probability and Mathematica Statistics I	al
MATH 443	Applied Linear Algebra	
MATH/ COMP SCI 513	Numerical Linear Algebra	
MATH/ COMP SCI 514	Numerical Analysis	
MATH 519	Ordinary Differential Equations	
MATH 521	Analysis I	
MATH 522	Analysis II	
MATH 531	Probability Theory	
MATH 561	Differential Geometry	
MATH 616	Data-Driven Dynamical Systems, Stochastic Modeling and Prediction	
MATH 619	Analysis of Partial Differential Equations	
MATH 623	Complex Analysis	
MATH 627	Introduction to Fourier Analysis	
MATH/I SY E/ OTM/STAT 632	Introduction to Stochastic Processes	
Total Credits		18-25

Code	Title	Credits
Core: Physics		
Complete both.		
PHYSICS 311	Mechanics	3
PHYSICS 322	Electromagnetic Fields	3
Physics Elective	S	
Remaining courses numbered 307 and	s/credits from any PHYSICS course d above.	9
Total Credits		15
ENGINEERI	NG	
Code	Title	Credits
Complete 21 crea	lits meeting the following criteria:	21
Must be distinct fr physics requireme	om any courses used to fulfill math and nts above.	
Selected from the	following:	
Biomedical Eng	ineering (B M E) 300-699	
Chemical and E	iological Engineering (CBE) 300-699	
Civil and Enviro 300-699	nmental Engineering (CIV ENGR)	
Electrical and C	Computer Engineering (E C E) 300-699	
Engineering Me M A) 300-699	chanics and Aerospace Engineering (E	
Engineering Ph	ysics (E P) 300-699	
Engineering Pro 300-699	ofessional Development (E P D)	
Geological Eng	ineering (G L E) 300-699	
Industrial and S	ystems Engineering (I SY E) 300-699	
Interdisciplinary 300-699	Courses (Engineering) (INTEREGR)	
Materials Scien	ce and Engineering (M S & E) 300-699	
Mechanical Eng	jineering (M E) 300-699	
Nuclear Engine	ering (N E) 300-699	

LABORATORY EXPERIENCE ³

Code	Title	Credits
Completed with a from the options	minimum of 3 credits selected below.	0-3
The following cours	e applies as 3 credits of lab:	
E M A 522	Aerodynamics Lab	
The following cours	es apply as 2 credits of lab each:	
PHYSICS 307	Intermediate Laboratory-Mechanics and Modern Physics	
PHYSICS 321	Electric Circuits and Electronics	
PHYSICS 325	Optics	
PHYSICS 407	Advanced Laboratory	
PHYSICS 623	Electronic Aids to Measurement	
PHYSICS 625	Applied Optics	
The following cours	es apply as 1 credit of lab each:	
E C E 270	Circuits Laboratory I	
EMA/ME 307	Mechanics of Materials Lab	

iotal ci cuita

PHYSICS

Complete at least five courses for 15 credits.

COMPUTATIONAL EXPERIENCE³

Code	Title	Credits
Select one of the fo	ollowing:	0-3
COMP SCI 412	Introduction to Numerical Methods	
E P/E M A 471	Intermediate Problem Solving for Engineers	
MATH/ COMP SCI 513	Numerical Linear Algebra	
MATH/ COMP SCI 514	Numerical Analysis	

RESIDENCE AND QUALITY OF WORK

- Minimum 2.000 GPA in AMEP program courses.⁴
- · Minimum 2.000 GPA and 15 upper-level AMEP program credits, taken in residence.^{4, 5}
- 15 credits in AMEP program courses, taken on the UW-Madison campus.4

HONORS IN THE MAJOR

Honors in the Major is not available in Applied Mathematics, Engineering, and Physics.

FOOTNOTES

- MATH 375 may also be used to fulfill the Linear Algebra requirement below. MATH 376 may be used to fulfill the Differential Equations requirement below.
- MATH 320 fulfills both the Linear Algebra and Differential Equations requirements. AMEP students are encouraged to consider the honors version of the course which is taught by AMEP faculty.
- 3 Courses used to fulfill this requirement need not be distinct from courses used to fulfill Mathematics, Physics, and Engineering requirements in AMEP.
- 4 This includes only those courses which may be used to fulfill Mathematics, Physics, Engineering, Chemistry, Laboratory, and Computational requirements described in the tables above.
- 5 A course numbered 300 or above is considered upper-level in the program.

UNIVERSITY DEGREE REQUIREMENTS

- Total Degree To receive a bachelor's degree from UW-Madison, students must earn a minimum of 120 degree credits. The requirements for some programs may exceed 120 degree credits. Students should consult with their college or department advisor for information on specific credit requirements.
- Residency Degree candidates are required to earn a minimum of 30 credits in residence at UW-Madison. "In residence" means on the UW-Madison campus with an undergraduate degree classification. "In residence" credit also includes UW-Madison courses offered in distance or online formats and credits earned in UW-Madison Study Abroad/Study Away programs.

Quality of	Undergraduate students must m
Work	point average specified by the s
	program to remain in good acad
	whose academic performance d
	thresholds will be placed on aca

maintain the minimum grade school, college, or academic demic standing. Students drops below these minimum thresholds will be placed on academic probation.

LEARNING OUTCOMES

LEARNING OUTCOMES

- 1. State, explain and apply principal theorems and techniques of applied mathematics, including (but not limited to) the subject areas of vector and complex calculus, linear algebra, and differential equations.
- 2. State, explain and apply theory and methods of classical and modern physics such as mechanics (classical, statistical, quantum), electricity, magnetism, thermodynamics, radiation and atomic physics.
- 3. Develop strategies to synthesize applied mathematics and physical sciences to address engineering problems, with emphasis on problems of current interest.
- 4. Design and conduct experiments to explore hypotheses regarding science and/or technology and/or engineering problems, and will use mathematics to help interpret experimental results.
- 5. Work in multidisciplinary groups of mathematicians, physical scientists, and engineers to formulate and solve STEM problems, which includes the creation and evaluation of models for natural phenomena.
- 6. Through written and oral presentations, students will communicate technical/scientific ideas and results to experts and non-experts.

FOUR-YEAR PLAN

SAMPLE FOUR-YEAR PLAN

This Sample Four-Year Plan is a tool to assist students and their advisor(s). Students should use it-along with their DARS report, the Degree Planner, and Course Search & Enroll tools-to make their own four-year plan based on their placement scores, credit for transferred courses and approved examinations, and individual interests. As students become involved in athletics, honors, research, student organizations, study abroad, volunteer experiences, and/or work, they might adjust the order of their courses to accommodate these experiences. Students will likely revise their own fouryear plan several times during college.

PROGRAM EXPECTATIONS

AMEP students come to UW-Madison with a wide range of mathematics preparation. Please see Advising and Careers (https://guide.wisc.edu/ undergraduate/letters-science/mathematics/applied-mathematicsengineering-physics-bs-amep/#advisingandcareerstext) for more information and alternative plans.

First Year

Fall	Credits Spring	Credits
PHYSICS 247	5 Communication A	3
MATH 234	4 MATH 320 (honors)	3
CHEM 109	5 PHYSICS 248	5
Foreign Language 1	4 Foreign Language 2	4
	18	15

Second Year

Fall	Credits Spring	Credits
MATH 321	3 INTER-LS 210	1
PHYSICS 249	4 MATH 322	3
PHYSICS 311	3 PHYSICS 322	3
Humanities Breadth	3 Core Math Elective 2	3
Core Math Elective 1	3 Humanities Breadth	3
	Biological/Social Science or Humanities	3
	16	16
Third Year		
Fall	Credits Spring	Credits
Core Math Elective 3	3 Core Physics 2	4
Physics Elective 1	4 Core Physics 3	4
Lab Experience	2-4 Computational Experience	3
Humanities/Social Science Breadth	3 Engineering 1	3
Ethnic Studies/Social Science Breadth	3	
	16	14
Fourth Year		
Fall	Credits Spring	Credits
Communication B	3 Engineering courses	9
Engineering Courses	12 Humanities Breadth	3
	Electives	3
	15	15

Total Credits 125

ADVISING AND CAREERS

ADVISING AND CAREERS

For information about advising for this special Letters & Science degree program, students should refer to AMEP Advising (https://amep.math.wisc.edu/advising/).

RECOMMENDED ADVANCED COURSES

A number of intermediate and advanced courses are recommended by AMEP advisors for use as electives beyond the core math and physics curricula. Please see our Courses (https://amep.math.wisc.edu/courses/) page for a list of recommended courses.

ALTERNATIVE FOUR-YEAR PLANS

Students pursuing an AMEP degree start college with a wide variety of preparations in mathematics. We have examples of some different paths students may take through the degree on the Four-Year Plans (https://amep.math.wisc.edu/four-year-plans/) page of the program website.

L&S CAREER RESOURCES

Every L&S major opens a world of possibilities. SuccessWorks (https:// successworks.wisc.edu/) at the College of Letters & Science helps students turn the academic skills learned in their major, certificates, and other coursework into fulfilling lives after graduation, whether that means jobs, public service, graduate school or other career pursuits. In addition to providing basic support like resume reviews and interview practice, SuccessWorks offers ways to explore interests and build career skills from their very first semester/term at UW all the way through graduation and beyond.

Students can explore careers in one-on-one advising, try out different career paths, complete internships, prepare for the job search and/or graduate school applications, and connect with supportive alumni and even employers in the fields that inspire them.

- SuccessWorks (https://careers.ls.wisc.edu/)
- Set up a career advising appointment (https://successworks.wisc.edu/ make-an-appointment/)
- Enroll in a Career Course (https://successworks.wisc.edu/careercourses/) - a great idea for first- and second-year students:
 - INTER-LS 210 L&S Career Development: Taking Initiative (1 credit)
 - INTER-LS 215 Communicating About Careers (3 credits, fulfills Comm B General Education Requirement)
- Learn about internships and internship funding (https:// successworks.wisc.edu/finding-a-job-or-internship/)
 INTER-LS 260 Internship in the Liberal Arts and Sciences
- Activate your Handshake account (https://successworks.wisc.edu/ handshake/) to apply for jobs and internships from 200,000+ employers recruiting UW-Madison students
- Learn about the impact SuccessWorks has on students' lives (https:// successworks.wisc.edu/about/mission/)