BIOCHEMISTRY, B.S.
 (L\&S)

Biochemistry is a very broad science that studies the molecules and chemistry of life. Biochemistry focuses on the structure, properties, and interactions of molecules such as proteins, nucleic acids, sugars and lipids. Biochemistry's aim is to understand how these molecules participate in the processes that support the various functions of the living cell. These studies are therefore essential for understanding disease and finding cures, for improving agriculture and the production of food and biofuels, and to produce innovation in biotechnology.

Whereas other biological science majors may focus on cellular, organismal, or population-level biology, biochemistry focuses on processes that occur at the molecular to cellular levels. Therefore, this major has a greater focus on basic and quantitative sciences, such as math and, particularly, on chemistry.

Biochemistry graduates go on to a variety of careers in science and science-related fields. The major is designed to fit the needs of the student who wishes to achieve bachelor's-level training as well as those planning to pursue graduate or professional study. The degree serves as an excellent background for medical school or veterinary school admission, as well as for graduate study in biochemistry or other allied fields (biology, bacteriology, genetics, molecular biology, or oncology).

HOW TO GET IN

Students may declare the major via an appointment with the undergraduate advisor at any time.

The Biochemistry major is offered through either CALS or the College of Letters \& Science (L\&S). Students interested in the differences or transferring between CALS and L\&S should meet with the advisor to discuss this in more detail.

Students who attend Student Orientation, Advising, and Registration (SOAR) with the College of Agricultural and Life Sciences (CALS) have the option to declare biochemistry at SOAR. Students may otherwise declare after they have begun their undergraduate studies.

Students who intend to major in Biochemistry may not combine this major ("double major") with the Molecular and Cell Biology major.

REQUIREMENTS

UNIVERSITY GENERAL EDUCATION REQUIREMENTS

All undergraduate students at the University of Wisconsin-Madison are required to fulfill a minimum set of common university general education requirements to ensure that every graduate acquires the essential core of an undergraduate education. This core establishes a foundation for living a productive life, being a citizen of the world, appreciating aesthetic values, and engaging in lifelong learning in a continually changing world. Various schools and colleges will have requirements in addition to the requirements listed below. Consult your advisor for assistance, as needed. For additional information, see the university Undergraduate

General Education Requirements (http://guide.wisc.edu/undergraduate/ \#requirementsforundergraduatestudytext) section of the Guide.

General - Breadth-Humanities/Literature/Arts: 6 credits
Education

- Breadth-Natural Science: 4 to 6 credits, consisting of one 4- or 5-credit course with a laboratory component; or two courses providing a total of 6 credits
- Breadth-Social Studies: 3 credits
- Communication Part A \& Part B *
- Ethnic Studies *
- Quantitative Reasoning Part A \& Part B *
* The mortarboard symbol appears before the title of any course that fulfills one of the Communication Part A or Part B, Ethnic Studies, or Quantitative Reasoning Part A or Part B requirements.

COLLEGE OF LETTERS \& SCIENCE DEGREE REQUIREMENTS: BACHELOR OF SCIENCE (B.S.)

Students pursuing a Bachelor of Science degree in the College of Letters \& Science must complete all of the requirements below. The College of Letters \& Science allows this major to be paired with either the Bachelor of Arts or the Bachelor of Science degree requirements.

BACHELOR OF SCIENCE DEGREE REQUIREMENTS

Mathematics Complete two courses of $3+$ credits at the Intermediate or Advanced level in MATH, COMP SCI, or STAT subjects. A maximum of one course in each of COMP SCI and STAT subjects counts toward this requirement.

Foreign

 LanguageL\&S Breadth Complete:

- 12 credits of Humanities, which must include at least 6 credits of Literature; and
- 12 credits of Social Science; and
- 12 credits of Natural Science, which must include 6 credits of Biological Science and 6 credits of Physical Science.
Liberal Arts Complete at least 108 credits.
and Science
Coursework
Depth of Complete at least 60 credits at the Intermediate or Intermediate/ Advanced level.
Advanced
Coursework
Major Declare and complete at least one major.
Total Credits Complete at least 120 credits.
UW-Madison Complete both:
Experience $\cdot 30$ credits in residence, overall, and
- 30 credits in residence after the 86th credit.

Quality of
Work

- 2.000 in all coursework at UW-Madison
- 2.000 in Intermediate/Advanced level coursework at UW-Madison

NON-L\&S STUDENTS PURSUING AN L\&S
 MAJOR

Non-L\&S students who have permission from their school/college to pursue an additional major within L\&S only need to fulfill the major requirements. They do not need to complete the L\&S Degree Requirements above.

REQUIREMENTS FOR THE MAJOR MATHEMATICS

Mathematics Requirements Code Title

Credits
Complete one of the following options:

MATH 221	Calculus and Analytic Geometry 1 \& MATH 222 Calculus and Analytic Geometry	9
	2	
MATH 171	Calculus with Algebra and	14
\& MATH 217	Trigonometry I	
\& MATH 222	and Calculus with Algebra and	
	Trigonometry II and Calculus and Analytic Geometry 2	
MATH 275	Topics in Calculus I and Topics in Calculus II	10
\& MATH 276	and	

CHEMISTRY
 General Chemistry
 Code Title

Credits
Complete one sequence:

CHEM 103	General Chemistry I	9
\& CHEM 104	and General Chemistry II	5
CHEM 109	Advanced General Chemistry	10
CHEM 115	Chemical Principles I \& CHEM 116	and Chemical Principles II (satisfies both general and analytical chemistry requirements)

Organic Chemistry

Code	Title	Credits
Complete All:		
CHEM 343	Organic Chemistry I	3
CHEM 344	Introductory Organic Chemistry	2
CHEM 345	Laboratory	3

Analytical Chemistry

Code	Title	Credits
Complete one:	Fundamentals of Analytical Science	4
CHEM 327	Fundamentals of Analytical Science	4
CHEM 329	Chemical Principles II (satisfies both general and analytical chemistry requirements)	5

Physical Chemistry

Code	Title	Credits
Complete one:	Biophysical Chemistry	
(recommended)		

BIOLOGY
Students must complete either Option A (introductory + upper-level biology), or Option B (Biocore), for 16 total credits of biological science coursework.

Option A

Option A Introductory Biology
Code Title Credits

Complete one of the following introductory biology options:

BIOLOGY/BOTANY/	Introductory Biology	
ZOOLOGY 151	and Introductory Biology	
\& BIOLOGY/	(recommended)	10
BOTANY/		
ZOOLOGY 152		10
BIOLOGY/	Animal Biology	
ZOOLOGY 101	and Animal Biology Laboratory	
\& BIOLOGY/	and General Botany	

,
ZOOLOGY 102
\& BOTANY/
BIOLOGY 130

AND Option A Upper-Level Biology
 At least 6 credits of upper-level biological science coursework are required (to achieve 16 total credits-more than 6 credits may be required if introductory biology totals less than 10 credits due to transfer credits). Select from the course list below. To see courses offered in specific upcoming semesters, please see the Biochemistry website (https://biochem.wisc.edu/undergraduate_program/ advanced-biology-courses-undergraduate-program/).
 Important: A course may not double count in both the "UpperLevel Biology" and the "Biochemistry" requirements for the major. Biochemistry courses on this list can count only for "Upper-Level Biology" if they are above-and-beyond what is needed to fulfill the "Biochemistry" portion of the major. For example, if students have taken BIOCHEM 501 (http://guide.wisc.edu/search/?P=BIOCHEM \%20501), they will need one advanced biochemistry elective to fulfill the Biochemistry requirement, and then any additional biochemistry courses taken can count for Upper-Level Biology.

Code	Title	Credits
ANAT\&PHY 335	Physiology	5
ANAT\&PHY 337	Human Anatomy	3
ANAT\&PHY 435	Fundamentals of Human Physiology	5
AGRONOMY 300	Cropping Systems	3
AGRONOMY 302	Forage Management and Utilization	3
AGRONOMY/HORT/ Plant Nutrition Management	3	
SOIL SCI 326		
AGRONOMY/	Plant Breeding and Biotechnology	3
HORT 338		

AGRONOMY/ BOTANY/HORT 339	Plant Biotechnology: Principles and Techniques I	4
AGRONOMY/ BOTANY/HORT 340	Plant Cell Culture and Genetic Engineering	3
AGRONOMY/A AE/ NUTR SCI 350	World Hunger and Malnutrition	3
AGRONOMY/ BOTANY/ SOIL SCI 370	Grassland Ecology	3
AGRONOMY 377	Global Food Production and Health	3
AGRONOMY/ HORT 501	Principles of Plant Breeding	3
AGRONOMY/ ATM OCN/ SOIL SCI 532	Environmental Biophysics	3
AN SCI/ FOOD SCI 305	Introduction to Meat Science and Technology	4
AN SCI/DY SCI/ NUTR SCI 311	Comparative Animal Nutrition	3
AN SCI 314	Poultry Nutrition	3
AN SCI/DY SCI 320	Animal Health and Disease	3
AN SCI/DY SCI 361	Introduction to Animal and Veterinary Genetics	2
AN SCI/DY SCI 362	Veterinary Genetics	2
AN SCI/DY SCI 363	Principles of Animal Breeding	2
AN SCI/DY SCI 370	Livestock Production and Health in Agricultural Development	3
AN SCI/DY SCI 414	Ruminant Nutrition \& Metabolism	3
AN SCl 415	Application of Monogastric Nutrition Principles	2
AN SCl 431	Beef Cattle Production	3
AN SCI 432	Swine Production	3
AN SCI/DY SCI 434	Reproductive Physiology	3
AN SCI 503	Avian Physiology	3
AN SCI 508	Poultry Products Technology	3
AN SCI 511	Breeder Flock and Hatchery Management	3
AN SCI 512	Management for Avian Health	3
AN SCI/ FOOD SCI 515	Commercial Meat Processing	2
AN SCI/F\&W ECOL/ ZOOLOGY 520	Ornithology	3
AN SCI/F\&W ECOL/ ZOOLOGY 521	Birds of Southern Wisconsin	3
AN SCI 610	Quantitative Genetics	3
AN SCI/ NUTR SCI 626	Experimental Diet Design	1
B M E/MED PHYS/ PHMCOL- M/PHYSICS/ RADIOL 619	Microscopy of Life	3
BIOCHEM/ NUTR SCI 510	Nutritional Biochemistry and Metabolism	3
BIOCHEM 550	Principles of Human Disease and Biotechnology	2

BIOCHEM 570	Computational Modeling of Biological Systems	3
BIOCHEM/ M M \& 575	Biology of Viruses	2
BIOCHEM 601	Protein and Enzyme Structure and Function	2
BIOCHEM/B M I/ BMOLCHEM/ MATH 609	Mathematical Methods for Systems Biology	3
BIOCHEM/ GENETICS/ MICROBIO 612	Prokaryotic Molecular Biology	3
BIOCHEM/ NUTR SCI 619	Advanced Nutrition: Intermediary Metabolism of Macronutrients	3
BIOCHEM/ GENETICS/ MD GENET 620	Eukaryotic Molecular Biology	3
BIOCHEM/ BOTANY 621	Plant Biochemistry	3
BIOCHEM 625	Mechanisms of Action of Vitamins and Minerals	2
BIOCHEM/ PHMCOL-M/ ZOOLOGY 630	Cellular Signal Transduction Mechanisms	3
BIOCHEM/ NUTR SCI 645	Molecular Control of Metabolism and Metabolic Disease	3
BSE 349	Quantitative Techniques for Biological Systems	3
BSE 364	Engineering Properties of Food and Biological Materials	3
BSE 365	Measurements and Instrumentation for Biological Systems	3
BSE/ENVIR ST 367	Renewable Energy Systems	3
BSE 460	Biorefining: Energy and Products from Renewable Resources	3
BSE 461	Food and Bioprocessing Operations	3
BSE 472	Sediment and Bio-Nutrient Engineering and Management	3
BMOLCHEM/ MICROBIO 668	Microbiology at Atomic Resolution	3
B M I/STAT 541	Introduction to Biostatistics	3
BMI/ COMP SCI 576	Introduction to Bioinformatics	3
BOTANY 300	Plant Anatomy	4
BOTANY 305	Plant Morphology and Evolution	4
BOTANY 330	Algae	3
BOTANY/ PLPATH 332	Fungi	4
BOTANY/ AGRONOMY/ HORT 339	Plant Biotechnology: Principles and Techniques I	4
BOTANY 400	Plant Systematics	4
BOTANY 401	Vascular Flora of Wisconsin	4
BOTANY/ F\&W ECOL 402	Dendrology	2

BOTANY/ANTHRO/ ZOOLOGY 410	Evolutionary Biology	3	ENVIR ST/ F\&W ECOL 515	Natural Resources Policy	3
BOTANY 422	Plant Geography	3	ENVIR ST/	Bioclimatology	3
BOTANY/	The Vegetation of Wisconsin	4	ATM OCN 520		
F\&W ECOL 455			ENVIR ST/A A E/	Decision Methods for Natural	3-4
BOTANY/	General Ecology	4	F\&WECOL 652	Resource Managers	
F\&W ECOL/ ZOOLOGY 460			FOOD SCI/ MICROBIO 324	Food Microbiology Laboratory	2
BOTANY/ENTOM/ ZOOLOGY 473	Plant-Insect Interactions	3	FOOD SCI/ MICROBIO 325	Food Microbiology	3
BOTANY/AMER IND/	Ethnobotany	3-4	FOOD SCl 410	Food Chemistry	3
ANTHRO 474			FOOD SCI 440	Principles of Food Engineering	3
BOTANY 500	Plant Physiology	3-4	FOOD SCI 511	Chemistry and Technology of Dairy	3
BOTANY/ENTOM/	Plant-Microbe Interactions:	3		Products	
PL PATH 505	Molecular and Ecological Aspects		FOOD SCI 514	Integrated Food Functionality	4
BOTANY/	Phylogenetic Analysis of Molecular	3	FOOD SCI 550	Fermented Foods and Beverages	2
PL PATH 563	Data		FOOD SCI 610	Food Proteins	2
BOTANY/HORT/ SOIL SCI 626	Mineral Nutrition of Plants	3	FOOD SCI 611	Chemistry and Technology of Dairy Products	3
BOTANY/ENVIR ST/ F\&W ECOL/	Conservation Biology	3	F\&W ECOL 300	Forest Biometry	4
ZOOLOGY 651			F\&W ECOL 306	Terrestrial Vertebrates: Life History and Ecology	4
BOTANY/ GENETICS/MM\&I/ PL PATH 655	Biology and Genetics of Fungi	3	F\&W ECOL/ HORT/LAND ARC/ PLPATH 309	Diseases of Trees and Shrubs	3
BOTANY/ LAND ARC 670	Adaptive Restoration Lab	2	F\&W ECOL 318	Principles of Wildlife Ecology	3
CHEM 575	Advanced Topics in Chemistry (Topics in Chemical Biology)	1-4	F\&W ECOL/ ZOOLOGY 335	Human/Animal Relationships: Biological and Philosophical Issues	3
CRB 625	Stem Cell Seminar	1	F\&W ECOL/	Extinction of Species	3
CRB 650	Molecular and Cellular Organogenesis	3	ZOOLOGY 360		
DY SCI 378	Lactation Physiology	3	F\&W ECOL 379	Principles of Wildlife Management	3
DY SCI 535	Dairy Farm Management Practicum	3	F\&W ECOL 401	Physiological Animal Ecology	3
ENTOM/	Introduction to Entomology	4	F\&W ECOL 404	Wildlife Damage Management	3
$\text { ZOOLOGY } 302$	Inroduction to Entomology		F\&W ECOL 410	Principles of Silviculture	3
ENTOM 321	Physiology of Insects	3	F\&W ECOL 415	Tree Physiology	3
ENTOM 331	Taxonomy of Mature Insects	4	F\&W ECOL/	Diseases of Wildlife	3
ENTOM 351	Principles of Economic Entomology	3	F\&W ECOL 550	Forest Ecology	3
ENTOM/ ZOOLOGY 371	Medical Entomology	3	F\&W ECOL 561	Wildlife Management Techniques	3
ENTOM 432	Taxonomy and Bionomics of Immature Insects	4	F\&W ECOL/ LAND ARC/ ZOOLOGY 565	Principles of Landscape Ecology	2
ENTOM/ F\&W ECOL 500	Insects in Forest Ecosystem Function and Management	2	F\&W ECOL 590	Integrated Resource Management	3
ENTOM/ ZOOLOGY 540	Theoretical Ecology	3	F\&W ECOL/ AGRONOMY/ ENTOM/	Ecotoxicology: The Chemical Players	1
ENTOM/GENETICS/ ZOOLOGY 624	Molecular Ecology	3	M\&ENVTOX 632		
ENVIR ST/ LAND ARC 361	Wetlands Ecology	3	F\&W ECOL/ AGRONOMY/ ENTOM/	Ecotoxicology: Impacts on Individuals	1
ENVIRST/ POP HLTH 471	Introduction to Environmental Health	3	M\&ENVTOX 633		
$\begin{aligned} & \text { ENVIR ST/ } \\ & \text { POP HLTH } 502 \end{aligned}$	Air Pollution and Human Health	3	F\&W ECOL/ AGRONOMY/ ENTOM/ M\&ENVTOX 634	Ecotoxicology: Impacts on Populations, Communities and Ecosystems	1

| F\&W ECOL 655 | Animal Population Dynamics | 3 | MICROBIO 632 | Industrial Microbiology/ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| GENETICS 466 | Principles of Genetics | 3 | | Biotechnology |
| GENETICS 467 | General Genetics 1 | 3 | NTP/ | Cellular and Molecular Neuroscience |

ZOOLOGY/ ENVIR ST 511	Ecology of Fishes Lab	2
ZOOLOGY/ PSYCH 523	Neurobiology	3
ZOOLOGY/ GEOSCI 541	Paleobiology	3
ZOOLOGY/ GEOSCI 542	Invertebrate Paleontology	3
ZOOLOGY 555	Laboratory in Developmental Biology	3
ZOOLOGY 570	Cell Biology	3
ZOOLOGY 603	Endocrinology	3-4
ZOOLOGY 611	Comparative and Evolutionary Physiology	3
ZOOLOGY 612	Comparative Physiology Laboratory	2
ZOOLOGY/ ANTHRO/NTP/ PSYCH 619	Biology of Mind	3
ZOOLOGY 625	Development of the Nervous System	2

Option B (Biocore)

Option B (Biocore)

Biocore is an honors-level, integrated sequence of lecture and lab courses that covers introductory and intermediate biology topics. Students must apply and be accepted to the program to take BIOCORE classes.

Code	Title	Credits
Complete these lecture courses:		
BIOCORE 381	Evolution, Ecology, and Genetics	3
BIOCORE 383	Cellular Biology	3
BIOCORE 485	Principles of Physiology	3
BIOCORE 587	Biological Interactions	3
Complete two of these lab classes:		4
BIOCORE 382	Evolution, Ecology, and Genetics Laboratory	
BIOCORE 384	Cellular Biology Laboratory	
BIOCORE 486	Principles of Physiology Laboratory	
Total Credits		16
PHYSICS (CALCULUS-BASED)		
Physics Requirements		
Code	Title	Credits
Complete one of the following options: ${ }^{1}$		
PHYSICS 207 \& PHYSICS 208	General Physics and General Physics (recommended)	10
PHYSICS 201 \& PHYSICS 202	General Physics and General Physics	10

BIOCHEMISTRY

One set of introductory coursework and the capstone course are required, for a total of three BIOCHEM courses.
$\left.\begin{array}{ll}\begin{array}{ll}\text { Introductory Courses } \\ \text { Code }\end{array} & \begin{array}{l}\text { Title }\end{array} \\ \text { Select one of the following options: } \\ \text { BIOCHEM 507 } \\ \text { \& BIOCHEM 508 }\end{array} \quad \begin{array}{l}\text { General Biochemistry I } \\ \text { and General Biochemistry II } \\ \text { (recommended) }\end{array}\right]$ 6redits

RESIDENCE AND QUALITY OF
 WORK

- 2.000 GPA in all BIOCHEM and major courses
- 2.000 GPA on at least 15 upper-level major credits in Residence. 2
- 15 credits in BIOCHEM, taken on campus

1
Students should consult with their advisor to discuss options if they have credit for PHYSICS 103 (http://guide.wisc.edu/search/?P=PHYSICS \%20103) and PHYSICS 104 (http://guide.wisc.edu/search/?P=PHYSICS \%20104).

2

Major courses numbered 300-699 are considered Upper-Level in the major for purposes of this requirement.

HONORS IN THE MAJOR

Students may declare Honors in the Biochemistry Major in consultation with their Biochemistry undergraduate advisor. To be admitted to Honors in the Major in Biochemistry, students must have declared a major in Biochemistry and have a 3.300 overall university GPA.

HONORS IN THE MAJOR IN BIOCHEMISTRY: REQUIREMENTS

To earn Honors in the Major in Biochemistry, students must satisfy the requirements for the major (above) as well as the following requirements. All courses used for Honors in the Major requirements must receive " B " or better grades to fulfill requirements.

- Earn a 3.300 University GPA
- Earn a 3.300 GPA for all BIOCHEM courses, and all courses accepted in the major
- Complete BIOCHEM 507 and BIOCHEM 508 for Honors
- Complete a two-semester Senior Honors Thesis for 6 credits total
- Complete at least 14 credits of any combination of the following coursework:
- Honors courses that would fulfill the Biology or Biochemistry requirements in the major (see above)
- Statistics coursework (does not need to be taken for Honors): STAT 301, STAT 371, or STAT/B M I 541
- Biochemistry elective coursework beyond the major requirements (does not need to be taken for Honors): NUTR SCI/ BIOCHEM 510, BIOCHEM 550, BIOCHEM 570 M M \& I/ BIOCHEM 575, BIOCHEM 601, MATH/B M I/BIOCHEM/ BMOLCHEM 609, MICROBIO/BIOCHEM/GENETICS 612, MD GENET/BIOCHEM/GENETICS 620, BOTANY/ BIOCHEM 621, BIOCHEM 625, BIOCHEM/PHMCOL-M/ ZOOLOGY 630, BIOCHEM/NUTR SCI 645
- Honors coursework in MATH, CHEM, or PHYSICS, from the list below:

Math		
Code	Title	Credits
MATH 275	Topics in Calculus I	5
MATH 276	Topics in Calculus II	5
MATH 341	Linear Algebra	3
MATH 375	Topics in Multi-Variable Calculus and	5
	Linear Algebra	
MATH 376	Topics in Multi-Variable Calculus and	5
	Differential Equations	
MATH 521	Analysis I	3
MATH 522	Analysis II	3
MATH 541	Modern Algebra	3
MATH 542	Modern Algebra	3

Chemistry

Code	Title	Credits
CHEM 109	Advanced General Chemistry	5
CHEM 115	Chemical Principles I	5

CHEM 116	Chemical Principles II	5
CHEM 343	Organic Chemistry I	3
CHEM 345	Organic Chemistry II	3
CHEM 344	Introductory Organic Chemistry	2
	Laboratory	
CHEM 329	Fundamentals of Analytical Science	4
CHEM 547	Advanced Organic Chemistry	3
CHEM 561	Physical Chemistry	3
CHEM 565	Biophysical Chemistry	4
CHEM 563	Physical Chemistry Laboratory I	1
CHEM 562	Physical Chemistry	3
CHEM 564	Physical Chemistry Laboratory II	1

Physics

Code

PHYSICS 201
PHYSICS 202
PHYSICS 207
PHYSICS 208
Title
Credits
General Physics 5
General Physics 5

PHYSICS 241	Introduction to Modern Physics	3
PHYSICS 247	A Modern Introduction to Physics	5
PHYSICS 248	A Modern Introduction to Physics	5
PHYSICS 249	A Modern Introduction to Physics	4

UNIVERSITY DEGREE REQUIREMENTS

Total Degree
To receive a bachelor's degree from UW-Madison, students must earn a minimum of 120 degree credits. The requirements for some programs may exceed 120 degree credits. Students should consult with their college or department advisor for information on specific credit requirements.
Residency Degree candidates are required to earn a minimum of 30 credits in residence at UW-Madison. "In residence" means on the UW-Madison campus with an undergraduate degree classification. "In residence" credit also includes UW-Madison courses offered in distance or online formats and credits earned in UW-Madison Study Abroad/Study Away programs.
Quality of Undergraduate students must maintain the minimum grade Work point average specified by the school, college, or academic program to remain in good academic standing. Students whose academic performance drops below these minimum thresholds will be placed on academic probation.

LEARNING OUTCOMES

1. Identify the fundamental biochemical principles that underlie all biological processes.
2. Communicate biochemical knowledge in both written reports and oral presentations to scientists and non-scientists.
3. Evaluate how biochemistry relates to other scientific disciplines and to contemporary issues in our society.
4. Demonstrate professional and ethical responsibility in scientific research.
5. Design and conduct quantitative experiments and/or interpret data to address a scientific question.

FOUR-YEAR PLAN

SAMPLE FOUR-YEAR PLAN

This Sample Four-Year Plan is a tool to assist students and their advisor(s). Students should use it-along with their DARS report, the Degree Planner, and Course Search \& Enroll tools-to make their own four-year plan based on their placement scores, credit for transferred courses and approved examinations, and individual interests. As students become involved in athletics, honors, research, student organizations, study abroad, volunteer experiences, and/or work, they might adjust the order of their courses to accommodate these experiences. Students will likely revise their own fouryear plan several times during college.

SAMPLE BIOCHEMISTRY FOUR-YEAR PLAN

Freshman

Fall	Credits Spring	Credits
CHEM 103 or 109	$4-5$ CHEM 104 (if needed)	5
MATH 221	5 MATH 222	4
Communications Part A	3 Literature Breadth	3
BIOCHEM 100 1	1 Social Science Breadth	3
	$\mathbf{1 3}$	$\mathbf{1 5}$

Sophomore

Fall	Credits Spring	Credits
ZOOLOGY/BIOLOGY/ BOTANY 151^{2}	$\begin{aligned} & 5 \text { ZOOLOGY/BIOLOGY/ } \\ & \text { BOTANY } 152 \end{aligned}$	5
CHEM 343	3 CHEM 344	2
Literature Breadth	3 CHEM 345	3
Social Science Breadth	3 Ethnic Studies	3
INTER-LS 210	1 Social Science Breadth	3
	15	16

Junior		
Fall	Credits	Spring
BIOCHEM 507	3 BIOCHEM 508	Credits
PHYSICS 207 or 201	5 PHYSICS 208 or 202	$3-4$
Humanities Breadth	3 CHEM 327	5
Electives	4 Electives	4
	$\mathbf{1 5}$	4

Senior			
Fall	Credits	Spring	Credits
CHEM 565		4 BIOCHEM 551	4
Upper-Level Biology for major		3 Upper-Level Biology for major	3
Social Science Breadth		3 Humanities Breadth	3
Electives		2 Electives	2
BIOCHEM 691 or 681 (if needed) ${ }^{3}$		3 BIOCHEM 692 or 682 (if needed)	3

Total Credits 120

First-year students interested in exploring the major can enroll in BIOCHEM 100.
2
Students may wish to consider pursuing the Biology Core Curriculum (Biocore) Honors certificate. For more details about how BIOCORE coursework can help them meet requirements for this major, see the Requirements page (https://guide.wisc.edu/undergraduate/letters-science/college-wide/biochemistry-bs/\#requirementstext). Students should consult with their advisor to identify the biological science sequence that best suits their academic and personal goals.
3
Senior Thesis, Directed Study, or work experience in laboratory are recommended, but are not required for the major. However, a Senior Honors Thesis is required to earn Honors in the Major.

ADVISING AND CAREERS

HOW TO SEEK ADVISING

- To schedule an appointment with the advisor, use Starfish (https:// advising.wisc.edu/facstaff/starfish/starfish-student-resources/).
- Send an email with brief questions to biochemmicrobioadvisor@wisc.edu.
- Drop-in advising hours for quick (10-15 minute) questions, on a first-come, first-serve basis, are posted on the Biochemistry / Microbiology Undergraduate Advising Hub website (https:// biochemmicrobio.wisc.edu/) each semester.

CAREER EXAMPLES

- Take your skills to a rewarding career in product development, quality control, hospitals, biotechnology, university labs, pharmaceuticals, forensics, and more. Possibilities at top organizations and leading companies include positions such as protein purification scientist, lab manager, medical scribe, clinical research coordinator, and food safety and quality chemist.
- Pursue a professional degree in medical, dental, or veterinary school, using your background in biochemistry to aid your admission and success.
- Build on your research experience and continue graduate studies in biochemistry or a related field to shape a career in academia as a professor or in industry.
- Use your science background to inform patent law, science policy and ethics, sales and marketing for science and technology companies, scientific article publishing, and related fields.

L\&S CAREER RESOURCES

Every L\&S major opens a world of possibilities. SuccessWorks (https:// successworks.wisc.edu/) at the College of Letters \& Science helps students turn the academic skills learned in their major, certificates, and other coursework into fulfilling lives after graduation, whether that means jobs, public service, graduate school or other career pursuits.

In addition to providing basic support like resume reviews and interview practice, SuccessWorks offers ways to explore interests and build career skills from their very first semester/term at UW all the way through graduation and beyond.

Students can explore careers in one-on-one advising, try out different career paths, complete internships, prepare for the job search and/or graduate school applications, and connect with supportive alumni and even employers in the fields that inspire them.

- SuccessWorks (https://careers.Is.wisc.edu/)
- Set up a career advising appointment (https://successworks.wisc.edu/ make-an-appointment/)
- Enroll in a Career Course (https://successworks.wisc.edu/careercourses/) - a great idea for first- and second-year students:
- INTER-LS 210 L\&S Career Development: Taking Initiative (1 credit)
- INTER-LS 215 Communicating About Careers (3 credits, fulfills Comm B General Education Requirement)
- Learn about internships and internship funding (https:// successworks.wisc.edu/finding-a-job-or-internship/)
- INTER-LS 260 Internship in the Liberal Arts and Sciences
- Activate your Handshake account (https://successworks.wisc.edu/ handshake/) to apply for jobs and internships from 200,000+ employers recruiting UW-Madison students
- Learn about the impact SuccessWorks has on students' lives (https:// successworks.wisc.edu/about/mission/)

PEOPLE

PROFESSORS

Amasino, Rick
Attie, Alan
Bednarek, Sebastian
Butcher, Sam
Cox, Mike
Craig, Elizabeth
Fox, Brian (Chair)
Friesen, Paul
Henzler-Wildman, Katie
Holden, Hazel
Kimble, Judith
Landick, Bob
Ntambi, James
Palmenberg, Ann
Ralph, John
Rayment, Ivan
Record, Tom
Rienstra, Chad
Senes, Alessandro
Sussman, Mike
Wright, Elizabeth

ASSOCIATE PROFESSORS

Hoskins, Aaron
Raman, Vatsan

ASSISTANT PROFESSORS

Cantor, Jason

Coyle, Scott
Grant, Tim
Kirchdoerfer, Robert
Lim, Ci Ji
Romero, Phil
Simcox, Judith
Venturelli, Ophelia

Weeks, Amy

ASSOCIATE FACULTY

Pennella, Mario
Shu, Erica

ACADEMIC ADVISORS

Biochemistry \& Microbiology Undergraduate Advising Hub (https:// biochemmicrobio.wisc.edu/advising/)
For more information, see the Department of Bacteriology directory (https://bact.wisc.edu/people.php).

WISCONSIN EXPERIENCE

The following opportunities can help students connect with other students interested in biochemistry, build relationships with faculty and staff, and contribute to out-of-classroom learning:

- The American Society for Biochemistry and Molecular Biology (ASBMB) UW-Madison Student Chapter (https://win.wisc.edu/ organization/ASBMB/) is a student organization for students interested in biochemistry. ASBMB provides information about careers and job opportunities, how to get involved in research, and volunteer and outreach opportunities.
- Several biochemistry faculty members offer experiential study abroad programs, where students can immerse themselves in research or global health field experiences. Students can review the Biochemistry Major Advising Page (https://studyabroad.wisc.edu/academics/major-advising-pages-maps/biochemistry/) on the International Academic Programs website for information on these and other programs, as well as requirements that can typically be fulfilled abroad and things to consider when fitting study abroad into an academic plan.
- Students are encouraged to get involved in research, whether in the biochemistry department or through other life science or chemistryrelated departments. Research can be performed for either course credit or pay, depending on the opportunity. The Biochemistry website (https://biochem.wisc.edu/undergraduate_program/research-opportunities-undergraduate-program/) and the advisors can provide more information on finding research opportunities. Summer funding awards for research are available through the department.

