ELECTRICAL ENGINEERING, B.S.

REQUIREMENTS

UNIVERSITY GENERAL EDUCATION REQUIREMENTS

All undergraduate students at the University of Wisconsin–Madison are required to fulfill a minimum set of common university general education requirements to ensure that every graduate acquires the essential core of an undergraduate education. This core establishes a foundation for living a productive life, being a citizen of the world, appreciating aesthetic values, and engaging in lifelong learning in a continually changing world. Various schools and colleges will have requirements in addition to the requirements listed below. Consult your advisor for assistance, as needed. For additional information, see the university Undergraduate General Education Requirements (http://guide.wisc.edu/undergraduate/#requirementsforundergraduatestudytext) section of the *Guide*.

General Education

- Breadth-Humanities/Literature/Arts: 6 credits
- Breadth—Natural Science: 4 to 6 credits, consisting of one 4- or 5-credit course with a laboratory component; or two courses providing a total of 6 credits
- Breadth-Social Studies: 3 credits
- Communication Part A & Part B *
- Ethnic Studies *
- Quantitative Reasoning Part A & Part B *
- * The mortarboard symbol appears before the title of any course that fulfills one of the Communication Part A or Part B, Ethnic Studies, or Quantitative Reasoning Part A or Part B requirements.

SUMMARY OF REQUIREMENTS

The following curriculum applies to students who were admitted to the electrical engineering degree program (classification changed to EE) in Fall 2017 or later.

Code	Title	Credits
Mathematics		16
Science		17-18
Electrical Engineerin	g Core	33
Electrical Engineerin	g Advanced Electives	24
Professional Elective	S	9
Communication Skill	S	6
Liberal Studies		15
Total Credits		120-121

MATHEMATICS 1

Code	Title	Credits
MATH 221	Calculus and Analytic Geometry 1	5
or MATH 217	Calculus with Algebra and Trigonometry II	
or MATH 275	Topics in Calculus I	

Total Credits		16
E C E 331	Introduction to Random Signal Analysis and Statistics	
MATH/STAT 431	Introduction to the Theory of Probability	
STAT/M E 424	Statistical Experimental Design	
STAT 311	Introduction to Theory and Methods of Mathematical Statistics I	
Probability and Statis	stics Elective	3
MATH 234	CalculusFunctions of Several Variables ²	4
or MATH 276	Topics in Calculus II	
MATH 222	Calculus and Analytic Geometry 2	4

In additional to the courses listed in the Mathematics Requirement at least one additional course must be completed for the advanced mathematics auxiliary condition. Choose: MATH 319 Techniques in Ordinary Differential Equations, MATH 320 Linear Algebra and Differential Equations, MATH 340 Elementary Matrix and Linear Algebra, MATH 341 Linear Algebra, E C E 334 State Space Systems Analysis, or E C E/COMP SCI/M E 532 Matrix Methods in Machine Learning to satisfy the advanced math auxiliary condition. These credits count toward either professional electives or advanced elective credit depending on the

2

MATH 375 and MATH 376 taken in sequence will fulfill the requirement for MATH 234, professional elective credit, and advanced math auxiliary condition.

SCIENCE

Code	Title	Credits
COMP SCI 300	Programming II	3
PHYSICS 201	General Physics ¹	5
or PHYSICS 207	General Physics	
or PHYSICS 247	A Modern Introduction to Physics	
PHYSICS 202	General Physics	5
or PHYSICS 208	General Physics	
or PHYSICS 248	A Modern Introduction to Physics	
Select one of the foll	owing:	4-5
CHEM 109	Advanced General Chemistry	
CHEM 103	General Chemistry I	
CHEM 104	General Chemistry II	
Total Credits		17-18

1

Students may also fulfill this requirement by taking E M A 201 Statics and E M A 202 Dynamics or E M A 201 Statics and M E 240 Dynamics.

ELECTRICAL ENGINEERING CORF

Code	Title	Credits
E C E 203	Signals, Information, and Computation	3
E C E 210	Introductory Experience in Electrical Engineering	2
E C E 219	Analytical Methods for Electromagnetics Engineering	2

Total Credits		33
E C E 370	Advanced Laboratory	2
E C E/ COMP SCI 352	Digital System Fundamentals	3
E C E 340	Electronic Circuits I	3
E C E 330	Signals and Systems	3
E C E 271	Circuits Laboratory II	1
E C E 270	Circuits Laboratory I	1
E C E/ COMP SCI 252	Introduction to Computer Engineering	3
E C E/PHYSICS 235	Introduction to Solid State Electronics	3
E C E 230	Circuit Analysis	4
E C E 220	Electrodynamics I	3

ELECTRICAL ENGINEERING ADVANCED ELECTIVES

Students must take 22 credits in at least three of six areas and at least 2 credits in two laboratory courses.

- At least 9 credits must be in E C E courses numbered 400 and above.
- · At least one course must be a capstone design course.
- At least one course must be MATH 319 Techniques in Ordinary
 Differential Equations, MATH 320 Linear Algebra and
 Differential Equations, MATH 340 Elementary Matrix and Linear
 Algebra, MATH 341 Linear Algebra, E C E 334 State Space Systems
 Analysis, or E C E/COMP SCI/M E 532 Matrix Methods in Machine
 Learning to satisfy the advanced math auxiliary condition. MATH 319
 Techniques in Ordinary Differential Equations, MATH 320 Linear
 Algebra and Differential Equations, MATH 340 Elementary Matrix
 and Linear Algebra, and MATH 341 Linear Algebra count toward
 professional electives. E C E 334 State Space Systems Analysis and
 E C E/COMP SCI/M E 532 Matrix Methods in Machine Learning count
 as advanced electives.
- Students can count 1 credit of E C E 1 Cooperative Education Program toward advanced electives.
- Students can count up to 6 credits of E C E 399 Independent Study, E C E 489 Honors in Research or E C E 699 Advanced Independent Study towards advanced electives.
- Students can take E C E 379 Special Topics in Electrical and Computer Engineering and E C E 601 Special Topics in Electrical and Computer Engineering as advanced electives.
- Students can count up to 5 credits of COMP SCI courses numbered 500 and above (not including independent study)
- E C E courses numbered 300 and above that are not specified in an area can count toward the total number of advanced elective credits required.

Laboratory

Code	Title	Credits
Select at least one co	urse from E C E 301 to E C E 317	
An additional laborate following list:	ory course must be taken from the	
E C E 303	Introduction to Real-Time Digital Signal Processing	
E C E 304	Electric Machines Laboratory	

E C E 305	Semiconductor Properties Laboratory
E C E 306	Linear Active Circuits Laboratory
E C E 308	Nonlinear Electronic Circuits Laboratory
E C E 313	Optoelectronics Lab
E C E 315	Introductory Microprocessor Laboratory
E C E 317	Sensors Laboratory
E C E 432	Digital Signal Processing Laboratory
E C E 453	Embedded Microprocessor System Design
E C E/B M E 462	Medical Instrumentation ¹
E C E 504	Electric Machine & Drive System Laboratory
E C E 512	Power Electronics Laboratory
E C E 545	Advanced Microwave Measurements for Communications
E C E 549	Integrated Circuit Fabrication Laboratory
E C E 554	Digital Engineering Laboratory
E C E/M E 577	Automatic Controls Laboratory

Designated as a capstone course. Students can also take E C E 491 Senior Design Project for capstone credit.

Fields & Waves

Code	Title	Credits
E C E 320	Electrodynamics II	3
E C E 420	Electromagnetic Wave Transmission	3
E C E 434	Photonics	3
E C E/N E/ PHYSICS 525	Introduction to Plasmas	3
E C E/N E/ PHYSICS 527	Plasma Confinement and Heating	3
E C E/N E 528	Plasma Processing and Technology	3
E C E 536	Integrated Optics and Optoelectronics	3
E C E/PHYSICS 546	Lasers	2-3
E C E 547	Advanced Communications Circuit Design ¹	3

Designated as a capstone course. Students can also take E C E 491 Senior Design Project for capstone credit.

Systems & Control

Code	Title	Credits
E C E 332	Feedback Control Systems	3
E C E 334	State Space Systems Analysis	3
E C E/M E 439	Introduction to Robotics ¹	3
E C E/M E 577	Automatic Controls Laboratory ¹	4

Designated as a capstone course. Students can also take E C E 491 Senior Design Project for capstone credit.

Power & Machines			
	Code	Title	Credits
	E C E 355	Electromechanical Energy Conversion	3
	E C E 356	Electric Power Processing for Alternative Energy Systems	3
	E C E 411	Introduction to Electric Drive Systems	3
	E C E 412	Power Electronic Circuits ¹	3
	E C E 427	Electric Power Systems ¹	3
	E C E 504	Electric Machine & Drive System Laboratory	2-3
	E C E 511	Theory and Control of Synchronous Machines	3
	E C E 512	Power Electronics Laboratory ¹	3

Designated as a capstone course. Students can also take E C E 491 Senior Design Project for capstone credit.

Communications & Signal Processing

Code	Title	Credits
E C E 331	Introduction to Random Signal Analysis and Statistics	3
E C E 401	Electro-Acoustical Engineering	3
E C E 431	Digital Signal Processing ¹	3
E C E 432	Digital Signal Processing Laboratory	3
E C E/COMP SCI/ MATH 435	Introduction to Cryptography	3
E C E 436	Communication Systems I ¹	3
E C E 437	Communication Systems II ¹	3
E C E 447	Applied Communications Systems ¹	3
E C E/COMP SCI/ M E 532	Matrix Methods in Machine Learning	3
E C E/ COMP SCI 533	Image Processing ¹	3
E C E 537	Communication Networks ¹	3
E C E/COMP SCI/ M E 539	Introduction to Artificial Neural Networks ¹	3
E C E/MATH 641	Introduction to Error-Correcting Codes	3

Designated as a capstone course. Students can also take E C E 491 Senior Design Project for capstone credit.

Circuits & Devices

Code	Title	Credits
E C E 335	Microelectronic Devices	3
E C E 342	Electronic Circuits II	3
E C E 445	Semiconductor Physics and Devices	3
E C E/B M E 462	Medical Instrumentation ¹	3
E C E 466	Electronics of Solids	3
E C E 541	Analog MOS Integrated Circuit Design ¹	3

E C E 542	Introduction to Microelectromechanical Systems ¹	3
E C E 545	Advanced Microwave Measurements for Communications ¹	3
E C E 548	Integrated Circuit Design ¹	3
E C E 549	Integrated Circuit Fabrication Laboratory ¹	3
E C E 555	Digital Circuits and Components ¹	3

Designated as a capstone course. Students can also take E C E 491 Senior Design Project for capstone credit.

Computers & Computing

Code	Title	Credits
E C E 353	Introduction to Microprocessor Systems	3
E C E/ COMP SCI 354	Machine Organization and Programming	3
E C E 453	Embedded Microprocessor System Design ¹	4
E C E 454	Mobile Computing Laboratory ¹	4
E C E/B M E 463	Computers in Medicine	3
E C E/ COMP SCI 506	Software Engineering	3
E C E 551	Digital System Design and Synthesis	3
E C E/ COMP SCI 552	Introduction to Computer Architecture	3
E C E 553	Testing and Testable Design of Digital Systems ¹	3
E C E 554	Digital Engineering Laboratory ¹	4
E C E 556	Design Automation of Digital Systems ¹	3

Designated as a capstone course. Students can also take E C E 491 Senior Design Project for capstone credit.

PROFESSIONAL ELECTIVES

itle	Credits
area of professional interest. The	9
ceptable as professional electives	
ed to meet any other degree	
	area of professional interest. The ceptable as professional electives

MATH/ COMP SCI 240	Introduction to Discrete Mathematics
E C E 204	Data Science & Engineering
E C E 320	Electrodynamics II
E C E 331	Introduction to Random Signal Analysis and Statistics
E C E 332	Feedback Control Systems
E C E 334	State Space Systems Analysis
E C E 335	Microelectronic Devices
E C E 342	Electronic Circuits II
E C E 353	Introduction to Microprocessor Systems

advanced except that Math, Computer Sciences, and Statistics courses must follow the above criteria

Engineering courses numbered 300 and higher that are not E C E or cross-listed with E C E

Up to six credits of Professional Electives can be taken from School of Business classes numbered 300 and higher.

DS 501 Special Topics (Wearable Technologies)

DANCE 560 Current Topics in Dance: Workshop (Making Digital Lighting Controls)

Students may only earn degree credit for MATH 320 Linear Algebra and Differential Equations or MATH 340 Elementary Matrix and Linear Algebra, not both.

COMMUNICATION SKILLS

Code	Title	Credits
ENGL 100	Introduction to College Composition	3
or LSC 100	Science and Storytelling	
or COM ARTS 100	Introduction to Speech Composition	
or COM ARTS 181	Elements of Speech-Honors Course	
or ESL 118	Academic Writing II	
INTEREGR 397	Engineering Communication	3
Total Credits		6

LIBERAL STUDIES ELECTIVES

Code	Title	Credits
College of E	ngineering Liberal Studies Requirem	nents
Complete req	uirements (http://guide.wisc.edu/	15
undergraduat	e/engineering/#requirementstext) ¹	
Total Credits	5	15

1

All liberal studies credits must be identified with the letter H, S, L, or Z. Language courses are acceptable without the letter and are considered humanities. **Note**: See an E C E advisor and/or the EE Curriculum Guide for additional information.

HONORS IN UNDERGRADUATE RESEARCH PROGRAM

Qualified undergraduates may earn an Honors in Research designation on their transcript and diploma by completing 8 credits of undergraduate honors research, including a senior thesis. Further information is available in the department office.

NAMED OPTION

View as listView as grid

 ELECTRICAL ENGINEERING: MACHINE LEARNING AND DATA SCIENCE, B.S. (HTTP:// GUIDE.WISC.EDU/UNDERGRADUATE/ ENGINEERING/ELECTRICAL-COMPUTER-ENGINEERING/ELECTRICAL-ENGINEERING-BS/ELECTRICAL-ENGINEERING-MACHINE-LEARNING-DATA-SCIENCE-BS/)

TOTAL DEGREE CREDITS: 120

UNIVERSITY DEGREE REQUIREMENTS

Total Degree To receive a bachelor's degree from UW–Madison, students must earn a minimum of 120 degree credits.

The requirements for some programs may exceed 120 degree credits. Students should consult with their college or department advisor for information on specific credit requirements.

Residency

Degree candidates are required to earn a minimum of 30 credits in residence at UW–Madison. "In residence" means on the UW–Madison campus with an undergraduate degree classification. "In residence" credit also includes UW–Madison courses offered in distance or online formats and credits earned in UW–Madison Study Abroad/Study Away programs.

Quality of Undergraduate students must maintain the minimum grade Work point average specified by the school, college, or academic program to remain in good academic standing. Students whose academic performance drops below these minimum thresholds will be placed on academic probation.