1

BIOMEDICAL DATA SCIENCE, M.S.

REQUIREMENTS

MINIMUM GRADUATE SCHOOL REQUIREMENTS

Review the Graduate School minimum academic progress and degree requirements (http://guide.wisc.edu/graduate/#policiesandrequirementstext), in addition to the program requirements listed below.

MAJOR REQUIREMENTS MODE OF INSTRUCTION

Face to Face	Evening/ Weekend	Online	Hybrid	Accelerated
Yes	No	No	No	No

Mode of Instruction Definitions

Accelerated: Accelerated programs are offered at a fast pace that condenses the time to completion. Students typically take enough credits aimed at completing the program in a year or two.

Evening/Weekend: Courses meet on the UW–Madison campus only in evenings and/or on weekends to accommodate typical business schedules. Students have the advantages of face-to-face courses with the flexibility to keep work and other life commitments.

Face-to-Face: Courses typically meet during weekdays on the UW-Madison Campus.

Hybrid: These programs combine face-to-face and online learning formats. Contact the program for more specific information.

Online: These programs are offered 100% online. Some programs may require an on-campus orientation or residency experience, but the courses will be facilitated in an online format.

CURRICULAR REQUIREMENTS

Requirement	t Detail
Minimum Credit Requirement	31 credits
Minimum Residence Credit Requirement	16 credits
Minimum Graduate Coursework Requirement	16 credits must be graduate-level coursework. Details can be found in the Graduate School's Minimum Graduate Coursework (50%) policy (https://policy.wisc.edu/library/ UW-1244 (https://policy.wisc.edu/library/UW-1244/)).
Overall Graduate GPA Requirement	3.00 GPA required. This program follows the Graduate School's policy: https://policy.wisc.edu/library/UW-1203 (https://policy.wisc.edu/library/UW-1203/).

Other Grade Students must earn a B or above in all core curriculum Requirements coursework.

Assessments No formal examination required.

and

Examinations

Language No language requirements.

Requirements

REQUIRED COURSES

Code	Title	Credits
Concentration	on Electives ¹	12

In consultation with their faculty advisor, students will select electives in an area of concentration within biomedical data science. Examples include but are not limited to:

I SY E 517	Decision Making in Health Care
BMI/STAT 541	Introduction to Biostatistics

or B M I/ Introduction to Biostatistics for Population Health

POP HLTH 551

or STAT/ Statistical Methods for Bioscience I F&W ECOL/

HORT 571

B M I/ Regression Methods for Population

POP HLTH 552 Health

B M I/ Medical Image Analysis

COMP SCI 567

STAT/F&W ECOL/ Statistical Methods for Bioscience II

HORT 572

B M I 573 Foundations of Data-Driven

Healthcare

B M I/ Introduction to Bioinformatics

COMP SCI 576

B M I/BIOCHEM/ Mathematical Methods for Systems BMOLCHEM/ Biology

MATH 609

I SY E/B M I 617 Health Information Systems

B M I/STAT 641 Statistical Methods for Clinical Trials

B M I/STAT 642 Statistical Methods for Epidemiology

B M I/ Advanced Regression Methods for POP HLTH 651 Population Health

B M I/STAT 741 Survival Analysis Theory and

Methods

B M I/ Computational Methods for Medical COMP SCI 767 Image Analysis

COMP 3CI 767 Illiage Allalysis

B M I/STAT 768 Statistical Methods for Medical

Image Analysis

B M I 773 Clinical Research Informatics
B M I / Computational Network Biology

COMP SCI 775

B M I/ Advanced Bioinformatics

COMP SCI 776

B M I/STAT 877 Statistical Methods for Molecular

Biology

Data Science Electives ¹ 12

In consultation with their faculty advisor, students will select electives in computer science and/or statistics. Examples include but are not limited to:

Examples include but	are not innited to.	
STAT 609	Mathematical Statistics I	
STAT 610	Introduction to Statistical Inference	
STAT 627	Professional Skills in Data Science	
STAT 771	Statistical Computing	
STAT 849	Theory and Application of	
	Regression and Analysis of Variance	
	I	
STAT 850	Theory and Application of	
	Regression and Analysis of Variance	
COMP SCI 766	Computer Vision	
COMP SCI/E C E/ I SY E 524	Introduction to Optimization	
COMP SCI/E C E/ M E 532	Matrix Methods in Machine Learning	
COMP SCI 571	Building User Interfaces	
COMP SCI/I SY E/ MATH/STAT 726	Nonlinear Optimization I	
COMP SCI 744	Big Data Systems	
COMP SCI 762	Advanced Deep Learning	
COMP SCI 765	Data Visualization	
COMP SCI 784	Foundations of Data Management	
COMP SCI 564	Database Management Systems: Design and Implementation	
COMP SCI 764	Topics in Database Management Systems	
COMP SCI 570	Introduction to Human-Computer Interaction	
COMP SCI/ ED PSYCH/ PSYCH 770	Human-Computer Interaction	
COMP SCI 540	Introduction to Artificial Intelligence	
COMP SCI/ E C E 760	Machine Learning	
COMP SCI/ E C E 761	Mathematical Foundations of Machine Learning	
COMP SCI 769	Advanced Natural Language Processing	
COMP SCI/I SY E/ MATH 425	Introduction to Combinatorial Optimization	
COMP SCI/I SY E/ MATH/STAT 525	Linear Optimization	
COMP SCI 642	Introduction to Information Security	
Research Ethics Cou	•	1-2
B M I 738	Ethics for Data Scientists	
take B M I 738, one	mended. If a student is unable to of the following courses may be	
substituted.	Ethics in Science	
ONCOLOGY 715	Eunics in Science	

Advanced Topics (Topic:

of Research

Responsible Conduct of Research)

Ethics and the Responsible Conduct

BIOCHEM 729

NURSING 802

SURG SCI 812	Research Ethics and Career Development	
OBS&GYN 955	Responsible Conduct of Research for Biomedical Graduate Students	
OBS&GYN 956	Advanced Responsible Conduct of Research for Biomedical Students	
Research ²		3-6
BMI699	Independent Study	
Electives		0-3
Additional elective credits are not required if student completes two semesters (6 credits) of research.		
Total Credits		31

1

Between the Concentration Electives and Data Science Electives, students must complete at least 6 credits of computer sciences-oriented courses and 6 credits of statistics-oriented courses. Computer sciences-oriented courses include those in the Department of Computer Sciences course listing (COMP SCI). Statistics-oriented courses include those in the Department of Statistics course listing (STAT), in addition to B M I/POP HLTH 552 Regression Methods for Population Health and B M I/POP HLTH 651 Advanced Regression Methods for Population Health. A specific section of B M I 826 Special Topics in Biostatistics and Biomedical Informatics can count as either a computer sciences-oriented course or a statistics-oriented course at the discretion of the MS Program Steering Committee.

2

Students who take only 3 credits of research may need an additional electives course to reach the program minimum requirement.