BIOMEDICAL ENGINEERING, PHD

REQUIREMENTS

MINIMUM GRADUATE SCHOOL REQUIREMENTS

Review the Graduate School minimum academic progress and degree requirements (http://guide.wisc.edu/graduate/#policiesandrequirementstext), in addition to the program requirements listed below.

MAJOR REQUIREMENTS MODE OF INSTRUCTION

Face to Face	Evening/ Weekend	Online	Hybrid	Accelerated
Yes	No	No	No	No

Mode of Instruction Definitions

Accelerated: Accelerated programs are offered at a fast pace that condenses the time to completion. Students typically take enough credits aimed at completing the program in a year or two.

Evening/Weekend: Courses meet on the UW–Madison campus only in evenings and/or on weekends to accommodate typical business schedules. Students have the advantages of face-to-face courses with the flexibility to keep work and other life commitments.

Face-to-Face: Courses typically meet during weekdays on the UW-Madison Campus.

Hybrid: These programs combine face-to-face and online learning formats. Contact the program for more specific information.

Online: These programs are offered 100% online. Some programs may require an on-campus orientation or residency experience, but the courses will be facilitated in an online format.

CURRICULAR REQUIREMENTS

Requirement	t Detail
Minimum Credit Requirement	60 credits
Minimum Residence Credit Requirement	32 credits
Minimum Graduate Coursework Requirement	30 credits must be graduate-level coursework. Refer to the Graduate School: Minimum Graduate Coursework (50%) Requirement policy: https://policy.wisc.edu/library/UW-1244 (https://policy.wisc.edu/library/UW-1244/).
Overall Graduate GPA Requirement	3.00 GPA required. Refer to the Graduate School: Grade Point Average (GPA) Requirement policy: https://policy.wisc.edu/library/ UW-1203 (https://policy.wisc.edu/library/UW-1203/).

Other Grade n/a Requirements

Assessments PhD candidates are required to pass a comprehensive and qualifying examination, preliminary examination, and final Examinations oral defense. Deposit of the doctoral dissertation to the Graduate School is required.

Language No language requirements. Requirements

Caralanta

Graduate School Breadth Requirement

Breadth is provided via interdisciplinary training. The central aim of biomedical engineers is to unravel gaps in biological knowledge through the use of engineering principles. Thus, the doctoral program is inherently interdisciplinary. Prior to obtaining a PhD warrant, students will prepare a summary of their effort in interdisciplinary coursework and training. The purpose of the summary will be to document the effort to meet the spirit of the minor requirement. The summary must be approved by the student's thesis committee and filed with the department. Students may elect to pursue a doctoral minor or graduate/professional certificate.

REQUIRED COURSES

Code	Title	Credits
General Requ	irements	
Research Credi	ts (B M E 790, 890, 990)	at least 35
Coursework, inc	cluding:	at least 25
2 semesters of	B M E 701	2
B M E 703	Responsible Conduct of Research for Biomedical Engineers	2
One set of PhD below).	pathway requirements (credits vary; see	21
Total Credits		60

Students who follow the PhD coursework guidelines should fulfill the Biomedical Engineering: Research, MS (https://guide.wisc.edu/graduate/biomedical-engineering/biomedical-engineering-ms/biomedical-engineering-research-ms/) requirements. They may file for that degree prior to their preliminary examination.

Biomaterials & Tissue Engineering Pathway 1

Biomaterials and tissue engineering employ a diverse range of approaches to develop methods to diagnose and treat diseases, create living tissue environments that may be used to restore the function of a damaged organ, and uncover biological mechanisms related to tissue development and disease. Graduate students trained in biomaterials and tissue engineering are expected to gain a detailed understanding of cellular and molecular biology, materials science, and engineering methods relevant to their research focus.

Code	Title	Credits
Biology Requireme	nt	3
CRB 640	Fundamentals of Stem Cell and Regenerative Biology	
CRB 650	Molecular and Cellular Organogenesis	
M M & I/PATH- BIO 528	Immunology	
ZOOLOGY 570	Cell Biology	

3-4

Data Analysis Requirement

BMI/STAT 5	41 Introduction to Biostatistics
BMI/ COMPSCI7	Advanced Bioinformatics
COMP SCI 76	Data Visualization
STAT/F&W EC	COL/ Statistical Methods for Bioscience I
STAT/BMI8	77 Statistical Methods for Molecular Biology
Engineering Re	equirement 9
B M E/ PHM SCI 430	Biological Interactions with Materials
B M E 510	Introduction to Tissue Engineering
B M E 511	Tissue Engineering Laboratory
B M E 520	Stem Cell Bioengineering
B M E 545	Engineering Extracellular Matrices
B M E 550	Introduction to Biological and Medical Microsystems
B M E 602	Special Topics in Biomedical Engineering (CRISPR Genome Editing and Engineering Laboratory)
CBE 540	Polymer Science and Technology
CBE 562	Special Topics in Chemical Engineering (Cellular Biomanufacturing)
CBE 648	Synthetic Organic Materials in Biology and Medicine
CBE 781	Biological Engineering: Molecules, Cells & Systems
M S & E 521	Advanced Polymeric Materials
Elective credit advisor	s chosen in consultation with your 6

Biomedical Imaging & Optics Pathway 1

Total Credits

Biomedical imaging and optics research develops and utilizes new experimental and computational tools to characterize tissue structure across multiple size scales. A particular focus is on human health, especially with respect to achieving superior diagnostic/prognostic tools for a spectrum of diseased states. Graduate students trained in this pathway are expected to gain a detailed understanding of mathematics, biology and engineering both optical and/or physical methods relevant to their research focus.

Code Mathematics Requi	Title irement ²	Credits
MATH 443	Applied Linear Algebra	
Biology Requireme	nt	3-5
ANAT&PHY 335	Physiology	
BIOCHEM 501	Introduction to Biochemistry	
ZOOLOGY 570	Cell Biology	
Data Analysis Requ	irement	3
B M E/ MED PHYS 574	Data Science in Medical Physics	
COMP SCI 319	Data Science Programming I for Research	

COMP SCI/E C E/ M E 532	Matrix Methods in Machine Learning	
COMP SCI/ E C E 766	Computer Vision	
COMP SCI/ B M I 767	Computational Methods for Medical Image Analysis	
Engineering Require	ement	9
B M E/ MED PHYS 573	Mathematical Methods in Medical Physics	
B M E/ MED PHYS 578	Non-Ionizing Diagnostic Imaging	
B M E 651	Biophotonics Laboratory	
B M E/ MED PHYS/ PHMCOL- M/PHYSICS/ RADIOL 619	Microscopy of Life	
B M E/ MED PHYS 710	Advances in Medical Magnetic Resonance	
B M E/CHEM/ MED PHYS 750	Biological Optical Microscopy	
B M E 751	Biomedical Optics and Biophotonics	
B M E 780	Methods in Quantitative Biology	
MED PHYS/ B M E/H ONCOL/ PHYSICS 501	Radiation Physics and Dosimetry	
MED PHYS/ B M E 580	The Physics of Medical Imaging with lonizing Radiation	
MED PHYS 777	Principles of X-ray Computed Tomography	
Elective credits cho advisor	sen in consultation with your	3

Biomechanics Pathway 1

Total Credits

Code

21-22

Biomechanists use experiments and computational tools to investigate the mechanical aspects of biological systems at levels ranging from whole organisms to organs, tissues, and cells. Graduate students trained in biomechanics are expected to gain a detailed understanding of mechanics, mathematics, biology, and engineering relevant to their research focus.

Title

21-23

Credits

Mechanics		12
required. The rema	o credits of Biomechanics courses are ining 6 credits may be selected from d Mechanics or Biomechanics lists.	
Biomechanics		
B M E/M E 414	Orthopaedic Biomechanics - Design of Orthopaedic Implants	
B M E/M E 415	Biomechanics of Human Movement	
BME/ME 505	Biofluidics	
B M E/M E 516	Finite Elements for Biological and Other Soft Materials	
B M E 603	Special Topics in Bioinstrumentation and Medical Devices (Image-Based Biomechanics)	

21-24

	B M E/M E 615	Tissue Mechanics	
	B M E/M E 715	Advanced Tissue Mechanics	
	Advanced Mechani	ics	
	M E 440	Intermediate Vibrations	
	M E/CIV ENGR/ E M A 508	Composite Materials	
	M E/E M A 540	Experimental Vibration and Dynamic System Analysis	
	M E 563	Intermediate Fluid Dynamics	
	M E/E M A 570	Experimental Mechanics	
	M E 573	Computational Fluid Dynamics	
	E M A 506	Advanced Mechanics of Materials I	
	E M A 519	Fracture Mechanics	
	EMA/ MS&E 541	Heterogeneous and Multiphase Materials	
	E M A 545	Mechanical Vibrations	
	E M A 605	Introduction to Finite Elements	
	EMA/EP 615	Micro- and Nanoscale Mechanics	
	E M A 630	Viscoelastic Solids	
	E M A 700	Theory of Elasticity	
	E M A 710	Mechanics of Continua	
В	iosciences		3-5
	ANAT&PHY 335	Physiology	
	ANAT&PHY 435	Fundamentals of Human Physiology	
	BIOCHEM/ GENETICS/ MD GENET 620	Eukaryotic Molecular Biology	
	CRB/B M E 670	Biology of Heart Disease and Regeneration	
	KINES 773	Cardiorespiratory Adaptions to Environment and Exercise	
	ZOOLOGY 570	Cell Biology	
	ective credits cho dvisor	sen in consultation with your	6

Medical & Microdevices Pathway 1

Total Credits

Medical and mircodevices involve the use of electronic and computational tools to develop devices used in diagnosis and treatment of disease ranging from the systemic to the cellular and molecular levels.

Title	Credits
rement ²	3
Applied Linear Algebra	
Ordinary Differential Equations	
Analysis of Partial Differential Equations	
nt	3-5
Physiology	
Introduction to Biochemistry	
Prokaryotic Molecular Biology	
	Applied Linear Algebra Ordinary Differential Equations Analysis of Partial Differential Equations nt Physiology Introduction to Biochemistry

	BIOCHEM/ GENETICS/ MD GENET 620	Eukaryotic Molecular Biology	
	PATH 750	Cellular and Molecular Biology/ Pathology	
	PATH 752	Cellular and Molecular Biology/ Pathology Seminar	
	ZOOLOGY/ PSYCH 523	Neurobiology	
	ZOOLOGY 570	Cell Biology	
D	ata Analysis Requ	irement	3-4
	BMI/STAT 541	Introduction to Biostatistics	
	BMI/STAT 542	Introduction to Clinical Trials I	
	B M I/ COMP SCI 576	Introduction to Bioinformatics	
	BMI/ COMPSCI 776	Advanced Bioinformatics	
E	ngineering Requir	ement	9
	B M E/E C E 462	Medical Instrumentation	
	B M E/ MED PHYS 535	Introduction to Energy-Tissue Interactions	
	B M E 550	Introduction to Biological and Medical Microsystems	
	B M E 602	Special Topics in Biomedical Engineering (Introduction to Neuroengineering)	
	B M E 640	Medical Devices Ecosystem: The Path to Product	
	B M E 651	Biophotonics Laboratory	
	B M E/CHEM/ MED PHYS 750	Biological Optical Microscopy	
	ective credits cho Ivisor	sen in consultation with your	3

Neuroengineering Pathway¹

Total Credits

21-23

Neuroengineering is the convergence of neuroscience, computation, device development, and mathematics to improve human health.

Neuroengineering brings together state-of-the-art technologies for the development of devices and algorithms to assist those with neural disorders. It is also used to reverse engineer living neural systems via new algorithms, technologies and robotics. Students pursing this pathway are involved in all of these endeavors so as the next generation of engineers, they will transcend the traditional boundaries of neuroscience, technology, engineering and mathematics.

Code	Title	Credits
Data Analysis Requ	irement	3
COMP SCI 319	Data Science Programming I for Research	
COMP SCI/E C E/ M E 532	Matrix Methods in Machine Learning	
COMP SCI/ E C E 533	Image Processing	
COMP SCI/ B M I 567	Medical Image Analysis	
Engineering Requir	ement	9

	B M E 520	Stem Cell Bioengineering			
	B M E 550	Introduction to Biological and Medical Microsystems			
	B M E 602	Special Topics in Biomedical Engineering (Introduction to Neuroengineering)			
	B M E 640	Medical Devices Ecosystem: The Path to Product			
	E C E/B M E 462	Medical Instrumentation			
	E C E/B M E 463	Computers in Medicine			
В	iology Requiremer	nt	3		
	KINES 721	Neural Basis for Movement			
	KINES 861	Principles of Motor Control and Learning			
	NTP/ NEURODPT 610	Cellular and Molecular Neuroscience			
	NTP/NEURODPT/ PSYCH 611	Systems Neuroscience			
	NTP 735	Neurobiology of Disease			
	PSYCH 610	Design and Analysis of Psychological Experiments I			
	PSYCH 733	Perceptual and Cognitive Sciences			
	ZOOLOGY 625	Development of the Nervous System			
	Elective credits chosen in consultation with your advisor				

Systems & Synthetic Biology Pathway 1

Total Credits

Systems and synthetic biology utilizes experimental and computational tools in an iterative fashion to analyze and regulate biological systems.

Students interested in earning a doctoral minor in Quantitative Biology (http://guide.wisc.edu/graduate/biomedical-engineering/quantitative-biology-doctoral-minor/): enrollment in B M E 780 Methods in Quantitative Biology is a requirement. Additionally, students will need to take one additional 3-credit course in quantitative science, biology, or integrated biology/quantitative science from the approved list of courses in the doctoral minor (this course counts toward the elective credits for this pathway).

Code Mathematics Requ	Title irement ²	Credits 3
MATH 443	Applied Linear Algebra	
MATH 519	Ordinary Differential Equations	
MATH 619	Analysis of Partial Differential Equations	
Biology Requireme	ent	3
BIOCHEM 501	Introduction to Biochemistry	
BIOCHEM/ GENETICS/ MICROBIO 612	Prokaryotic Molecular Biology	
BIOCHEM/ GENETICS/ MD GENET 620	Eukaryotic Molecular Biology	
M M & I/PATH- BIO 528	Immunology	

	ZOOLOGY 570	Cell Biology					
C	ata Analysis Requi	rement	3				
	BMI/STAT 541	Introduction to Biostatistics					
	BMI/ COMPSCI 576	Introduction to Bioinformatics					
	COMP SCI 319	Data Science Programming I for Research					
	COMP SCI/E C E/ M E 532	Matrix Methods in Machine Learning					
E	Ingineering Require	ement	9				
	B M E 550	Introduction to Biological and Medical Microsystems					
	B M E 556	Systems Biology: Mammalian Signaling Networks					
	B M E 602	Special Topics in Biomedical Engineering (CRISPR Genome Editing and Engineering Laboratory)					
	B M E 780	Methods in Quantitative Biology					
	CBE/B M E 560	Biochemical Engineering					
	CBE 660	Intermediate Problems in Chemical Engineering					
	CBE 781	Biological Engineering: Molecules, Cells & Systems					
	CBE/B M E 782	Modeling Biological Systems					
	Elective credits chosen in consultation with your advisor						

Guidelines for students who earned a master's degree in another field at UW-Madison

21

- Students who have earned a master's degree in another field at UW-Madison should contact the Associate Chair of the PhD Degree to understand remaining course requirements. A maximum of 7 credits can be counted from a separate MS degree, in compliance with the Graduate School's Double Degrees policy (https://grad.wisc.edu/documents/double-degrees/).
- 2. Master's degree students who have been absent for five or more years lose all degree credits earned before their absence.
- 3. All students with a prior master's degree will need to complete the Qualifying Exams and Preliminary Exam requirements even if coursework requirements have been met. Please discuss your specific plan with the Associate Chair of the PhD Degree.

Footnotes

Total Credits

21

- These pathways are internal to the program and represent different curricular paths a student can follow to earn this degree. Pathway names do not appear in the Graduate School admissions application, and they will not appear on the transcript.
- The math requirement can be satisfied with a B- or better in the equivalent course in undergraduate. For approval, please e-mail the Associate Chair of the PhD Degree a copy of your unofficial transcript and indicate the course you are proposing to use. The credits do not transfer; you will instead be able to take an additional 3 credits of electives.