## **ASTRONOMY, M.S.** The Department of Astronomy offers the doctor of philosophy in astronomy. Although a master's degree is offered, students are not admitted for a terminal master's degree. The department has a long-standing reputation as one of the finest graduate astronomy and astrophysics programs in the United States. The program provides each student with a broad knowledge of modern observational and theoretical astrophysics, while emphasizing the development of independent research skills. Beginning with the first year in the program, graduate students play an active role in the department's research programs and have access to all research facilities. As teaching assistants, they also acquire experience as astronomy educators. The faculty are engaged in a broad range of observational and theoretical research. Topics of study include dynamical phenomena of massive stars; binary star evolution; dynamics of star clusters and star forming regions; compact objects; the interstellar and intergalactic medium; star formation; plasma astrophysics; computational fluid mechanics; magnetic fields; turbulence; the structure, kinematics, and stellar populations of nearby galaxies; active galactic nuclei; galactic winds and chemical evolution; galaxy clusters; galaxy formation and evolution; the star formation and black hole accretion history of the universe; and the development of innovative astronomical instrumentation. More information is available on the department website. ## RESEARCH FACILITIES Astronomical observations at UW–Madison trace their origin to the 15-inch refractor of Washburn Observatory, founded on the campus in 1878, and still open for public viewing. Wisconsin subsequently pioneered a multi-wavelength approach to astronomical observation. Faculty, research staff, and students are frequent observers on X-ray, ultraviolet, optical, infrared, radio, and submillimeter telescopes around the globe and in space. The department currently participates in the operation of a number of research-class observing facilities and is actively engaged in the development of cutting-edge instrumentation. The university is a major partner in the WIYN telescope, an advanced technology 3.5m telescope at Kitt Peak, Arizona, optimized for widefield imaging and spectroscopy, and in the 11m Southern African Large Telescope (SALT), the largest single aperture optical telescope in the Southern Hemisphere. The university is also a partner in the Sloan Digital Sky Survey IV, a massive spectroscopic survey of the distant Universe, nearby galaxies, and stars in the Milky Way. The department is actively involved in ASKAP and MEERKAT, precursor experiments for an array of radio telescopes one square kilometer in size. The department has a long history of developing astronomical instrumentation for both ground and space-based facilities. Current efforts center on the development of a near-infrared arm for the Robert Stobie Spectrograph on SALT, and the design and testing of fiber bundle arrays for the Sloan Digital Sky Survey. UW scientists are also continuing to develop and operate an innovative and highly successful Star Tracker for sounding rocket and balloon-borne experiments. Technical support is provided by in-house electronics and machine shops. The theory group maintains a variety of facilities to support numerical simulations. The main workhorse is a 72-node, 576-core cluster optimized for tightly coupled problems, such as hydrodynamics and magneto- hydrodynamics. A number of smaller clusters are used for development, analysis and three-dimensional visualization.